Estimating the Higher Heating Value of Eco-fuel mixed Biomass with Municipal Organic Wastes from Ultimate Analysis Data

원소분석을 통한 바이오매스에 도시형 유기성 폐기물을 혼합한 신연료의 고위발열량 예측

  • Oh, Song-Yul (Institute of Energy and Environment, Seoul National Univ. of Technology) ;
  • Kim, Lae-Hyun (Graduate School of Energy and Environment, Seoul National Univ. of Technology) ;
  • Han, Hee-Joon (Graduate School of Energy and Environment, Seoul National Univ. of Technology) ;
  • Moon, Jang-Soo (Korea Institute of Environment Science and Technology) ;
  • Kim, Hee-Joon (Graduate School of Energy and Environment, Seoul National Univ. of Technology)
  • 오송열 (서울산업대학교 에너지환경연구소) ;
  • 김래현 (서울산업대학교 에너지환경대학원) ;
  • 한희준 (서울산업대학교 에너지환경대학원) ;
  • 문장수 (한국환경기술진흥원) ;
  • 김희준 (서울산업대학교 에너지환경대학원)
  • Published : 2007.12.31

Abstract

HHV (Higher Heating Value) of biomass fuel is calculated by using ultimate analysis data and has been proposed by using correlation equation, and compared with the experiment the adequacy about each correlation equation with measured HHV and examined. Samples used for experiment are prepared by mixing biomass (i.e. rice husk and sawdust) with organic waste (i.e. polystyrene polypropylene and waste paper) of 10, 30, 50 wt% of composition. Ultimate analysis and measurement of HHV are respectively measured by using KS standard method. The average error value of estimated HHV results is about 880 kJ/kg(about 3.8% of measured HHV). The corresponding correlation coefficients ($R^2$) of experimental result and estimated HHV result are $0.957{\sim}0.996$.

바이오매스계 연료의 고위발열량(HHV) 예측을 성분원소분석 데이터와 제안된 대표적인 상관관계식을 이용하여 수행하였고, 각 상관식에 대한 그 타당성을 실측 HHV와 비교하여 검토하였다. 실험에 사용된 샘플들은 산림계 바이오매스인 노송나무의 톱밥과, 농업계 바이오매스인 왕겨, 그리고 여기에 유기성 폐기물인 polystyrene, waste paper, polypropylene을 각각 10, 30, 50wt%로 혼합하여 제작하였다. 성분원소의 측정과 HHV의 측정은 각각 KS 표준방법에 따랐으며, 예측된 HHV값의 평균 오차는 약 880 kJ/kg으로 이는 측정된 HHV의 약 3.8%에 해당하였다. 실험을 통한 값과 예측된 HHV 값 사이의 대응 상관계수의 곱($R^2$)은 $0.957{\sim}0.996$의 값을 나타내었다.

Keywords

References

  1. Friedl, A.; Padouvas, E.; Rotter, H.; Varmuza, K. Prediction of heating value of biomass fuel from element composition, Analytica Chimica Acta, 2005, 544, 191-198 https://doi.org/10.1016/j.aca.2005.01.041
  2. Chanhdong Sheng, J.L.T. Azevedo, Estimating the higher heating value of biomass fuels from basic analysis data, Biomass and Bioenergy, 2005, 28, 499-507 https://doi.org/10.1016/j.biombioe.2004.11.008
  3. Ministry of Environment, Korea, Report No. 200111480083-000247-104, 2004
  4. Hofbauer, H. BIOBIB - A Database For Biofuels Institute of Chemical Engineering, Vienna University of Technology, Austria, Vienna, 2004, www.vt.tuwien.ac.at/biobib/info.html
  5. ECN Phyllis: the composition of biomass and waste. http://www.ecn.nl/phyllis/
  6. IEA Bioenergy Task 32, Biomass combustion and cofiring. http://www.ieabcc.nl/
  7. Werther, J.; Saenger, M.; Hartge, E.U.; Ogada, T.; Siagi, Z. Combustion of agricultural residues. Progress in Energy and Combustion Science 2000 26(1), 1-27 https://doi.org/10.1016/S0360-1285(99)00005-2
  8. Williams, A.; Pourkashanian, M.; Jones, J.M. Combustion of pulverized coal and biomass. Progress in Energy and Combustion Science, 2001, 27(6), 587-610 https://doi.org/10.1016/S0360-1285(01)00004-1
  9. Sami, M.; Annamalai, K.; Wooldridge, M. Co-firing of coal and biomass fuel blends, Progress in Energy and Combustion Science, 2001, 27(2), 171-214 https://doi.org/10.1016/S0360-1285(00)00020-4
  10. Jimennez, L.; Gonzales, F. Study of the physical and chemical properties of lignocellulosic residues with a view to the production of fuels, Fuel, 1991, 70(8), 947-950 https://doi.org/10.1016/0016-2361(91)90049-G
  11. Cordedo, T.; Marquez, F.; Rodriguez-Mirasol, J.; Rodriguez, J.J. Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis, Fuel, 2001, 80(11), 1567-1571 https://doi.org/10.1016/S0016-2361(01)00034-5
  12. Demirbas, A. Calculation of higher heating values of biomass fuels, Fuel, 1997, 76(5), 431-434 https://doi.org/10.1016/S0016-2361(97)85520-2
  13. Corbitt, R.A. Standard Handbook of Environmental Engineering, McGraw-Hill, New York, 1989
  14. Gumz, W.; Hardt, L. Kurzes Handbuch der Brennstoff.und Feuerungstechnik, Springer-Verlag, Berlin, 1962
  15. Tillman, D.A. Wood as an energy resource. New York: Academic Press, 1978
  16. Demirbas, A. Relationships between lignin contents and heating values of biomass. Energy Conversion & Management, 2001, 42(2), 183-188 https://doi.org/10.1016/S0196-8904(00)00050-9
  17. Shajizadeh, F.; Degroot, W.G. Thermal uses and properties of carbohydrates and lignins. New York, Academic Press, 1976
  18. Annamalai, K.; Sweeten, J.M.; Ramalingam, S.C. Estimation of gross heating values of biomass fuels. Transactions of ASAE, 1987, 30, 1205-1208 https://doi.org/10.13031/2013.30545
  19. Lloyd, W.G, Davenport, D.A.J. Chem. Educ., 1980, 57, 56-60 https://doi.org/10.1021/ed057p56
  20. Kathiravale, S.; Yunus, M.N.M.; Sopian, K.; Samsuddin, A.H.; Rahman, R.A. Modeling the heating value of Municipal Solid Waste, Fuel, 2003, 82, 1119-1125 https://doi.org/10.1016/S0016-2361(03)00009-7
  21. Meraz, L.; Oropeza, M.; Dominguez, A. Chem. Educator, 2002, 7, 66-70 https://doi.org/10.1007/s00897020547a
  22. Wilson, D.L. Environ. Sci. Technol., 1972, 6, 1119-1121 https://doi.org/10.1021/es60072a011
  23. Jenkins, B.M.; Ebeling, J.M. Correlations of physical and chemical properties of terrestrial biomass with conversion, Symposium energy from biomass and waste IX IGT, 1985, 371
  24. Zanzi, R. Sjostrom K., Bjornborm E. Rapid pyrolysis of agricultural residues at high temperature, Biomass Bioenerg, 2002, 23(5), 357 https://doi.org/10.1016/S0961-9534(02)00061-2