• Title/Summary/Keyword: Mixing fuel

Search Result 783, Processing Time 0.022 seconds

A Comparision Study of LDPE Pyrolysis over Resin Additives and Inorganic Compounds of Silica Alumina Type (수지첨가제와 실리카알루미나 계열 무기물이 LDPE 수지의 열분해에 미치는 영향 비교 연구)

  • Bak, Young-Cheol;Choi, Joo-Hong;Kim, Nam-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.596-602
    • /
    • 2006
  • The effects of resin additives and inorganic compounds addition on the thermal decomposition of low density polyethylene(LDPE) resin have been studied in a thermal analyzer(TGA, DSC) and a small batch reactor. The silica-alumina type compounds tested were kaolinite, bentonite, perlite, diatomaceous earth, activated clay and clay. The resin additives were antiforgging-agent and longevity-agent. As the results of TGA experiments, addition of antifogging-agent, longevity-agent and clay increased the temperature of the maximum reaction rate($T_{max}$). The silica-alumina type inorganic materials increased the pyrolysis reraction rate in the order of activated clay, diatomaceous earth, bentonite, perlites, and kaolinite. In the DSC experiments, addition of antifogging-agent and clay decreased the heat of fusion and the heat of pyrolysis reaction. Bentonite decreased 20% of the heat of fusion and 25% of the heat of pyrolysis reaction. In the batch system experiments, the mixing of clay retarded the initial producing rate of fuel oil, but increased the yield of fuel oil. Addition of bentonite increased the yield of fuel oil from LDPE resin. Mixing of antifogging-agent and longevity-agent produced the fuel oil having lower carbon number. The amounts of the carbon number below 12 in fuel oil decreased with adding the clay. That below 23 in fuel oil increased with mixing of bentonite, perlite, kaolinite, and activated clay. But the mixing of diatomaceous earth did not affect the carbon contents of fuel oil from pure LDPE resin. In the silica-alumina type inorganic material used in this experiments, bentonite was the most effective from the pyrolysis heat, yields, and the characteristics of fuel oil.

Diesel Engine Intake Port Analysis Using Reverse-engineering Technique (리버스 엔지니어링을 통한 디젤엔진 흡기포트의 성능 비교)

  • Kim, Chang-Su;Park, Sung-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.502-507
    • /
    • 2015
  • In this paper, we built a three-dimensional model by applying reverse engineering techniques on targeting the intake port of 2900cc class diesel engine before that three-dimensional design technique is applied. The performance of the intake port is predicted and analysed using the computational flow analysis. Flow Coefficient and Swirl Ratio have been analyzed for two intake port models. One is the intake port for the diesel engine with plunger-type fuel system, and the other is for the diesel engine with CRDI fuel system. Computational result shows that the Flow Coefficient of the intake port with CRDI fuel system is increased upto 10 percentage compared with that with plunger-type. Also, the intake port with plunger-type has high Swirl Ratio at high valve lift, and the intake port with CRDI fuel system has high Swirl Ratio at relatively low valve lift. It is believed that because of high performance of the fuel injector, the intake port with CRDI fuel system is designed for more air amount and not much swirl flow at high valve lift. However, high swirl flow is required at low valve lift for initial fuel and air mixing. The result of this study may be useful for the re-manufacturing industry of automotive parts.

Lean Burn Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine (대형 액상분사식 LPG 엔진의 희박연소특성에 관한 연구)

  • 오승묵;김창업;강건용;우영민;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.1-11
    • /
    • 2004
  • Combustion and fuel distribution characteristics of heavy duty engine with the liquid phase LPG injection(LPLI) were studied in a single cylinder engine, Swirl ratio were varied between 1.2, 2.3, and 3.4 following Ricardo swirl number(Rs) definition, Rs=2.3 showed the best results with lower cycle-by-cycle variation and shorter burning duration in the lean region while strong swirl(Rs=3.4) made these worse for combustion enhancement. Excessive swirl resulted in reverse effects due to high heat transfer and initial flame kernel quenching. Fuel injection timings were categorized with open valve injection(OVI) and closed valve injection(CVI). Open valve injection showed shorter combustion duration and extended lean limit. The formation of rich mixture in the spark plug vicinity was achieved by open valve injection. With higher swirl strength(Rs=3.4) and open valve injection, the cloud of fuel followed the flow direction and the radial air/fuel mixing was limited by strong swirl flow. It was expected that axial stratification was maintained with open-valve injection if the radial component of the swirling motion was stronger than the axial components. The axial fuel stratification and concentration were sensitive to fuel injection timing in case of Rs=3.4 while those were relatively independent of the injection timing in case of Rs=2.3.

Engine Operation Characteristics of a Gasoline Direct Injection Engine (가솔린 직접 분사식 엔진의 운전특성에 관한 연구)

  • 조한승;박태용;박성진;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.54-66
    • /
    • 2000
  • A gasoline direct injection single cylinder engine has been developed to study operational characteristics for highly stratified conditions. Parameters related to design and experiment were also studied to understand the characteristics of combustion and emissions at some part load conditions. It was found that optimal timings between the end of fuel injection and spark ignition were existed for stable combustion under the stratified modes, In a low engine speed, fuel spray behavior around piston bowl was important for stable combustion. The in-cylinder air motion affecting fuel spray behavior was found to be a dominant factor at higher engine speed as fuel injection timing had to be advanced to secure enough time for fuel evaporation and mixing with surrounding air. As swirl ratio increased, spark timing could be advanced for stable combustion and a higher compression ratio could be used for improved fuel consumption and stable combustion at the stratified mode. It was also observed that electrode geometry and piston bowl shape played an important role for combustion and emission characteristics and some results were shown for comparison.

  • PDF

Research Activities about Characteristics of Fuel Injection and Combustion Using Endothermic Fuel (흡열연료를 이용한 연료분사 및 연소 특성 연구동향)

  • Choi, Hojin;Lee, Hyungju;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.73-80
    • /
    • 2013
  • Endothermic fuel utilizing technology is considered as a unique practical method of hypersonic vehicle for long distance flight. Research activities about characteristics of fuel injection and combustion using cracked by endothermic reaction are reviewed. Studies on characterization of supercritical fuel injection and mixing within supersonic flow field are surveyed. Researches on combustion characteristics such as ignition delay time, laminar burning velocity and combustion efficiency at supersonic model combustor are reviewed. In addition, domestic research activities on endothermic fuel are surveyed.

A Study on the Optimization of Fuel Metering for the Lean Combustion System in a Gasoline Engine (I) (가솔린 자동차의 희박연소시스템 적용을 위한 연료공급 최적화에 관한 연구 (I) - 가솔린 인젝터의 연료분열특성에 관한 연구 -)

  • Yoon, S.J.;Cho, D.J.;Pang, D.Y.
    • Journal of ILASS-Korea
    • /
    • v.3 no.3
    • /
    • pp.33-41
    • /
    • 1998
  • In recently, a study on the lean combustion is investigated intensively, because it is expected that this method may decrease the harmful exhaust gas and improve fuel economy in gasoline engine. The problems of lean combustion system in gasoline engine are ignition difficulty, misfire and instability of combustion. The investigation on the optimization of fuel metering and the control of mixing gas flow may be critical to improve the performance of lean combustion. In the fuel injection gasoline engine, the formation of mixture influences strongly on the engine performance such that the importance of fuel metering system becomes apparent. First of all, a study on the fuel breakup characteristics of gasoline fuel injector was carried out in this paper. Fuel injectors are pintle and 4hole-2spray type. The purpose of this study is to clarify the atomization mechanism of spray injected into atomosphere field through electronic controlled-fuel injectors, and to analyze spray characteristics such as drop size distribution and mean drop diameter produced at fuel injector. In this paper, the spray development is observed by taking photograps using 80mm still-camera system, and drop sizes are measured by PMAS. From these experiment, spray pattern injected from gasoline fuel injectors was investigated clearly. Also, it was found that SMD and drop size distribution of injected fuel spray from gasoline fuel injectors.

  • PDF

A Numerical Study on Performance of a Heavy-Duty Diesel engine for Power Generation under Natural Gas-Diesel Dual Fuel Operation (발전용 대형 디젤 엔진의 천연가스-디젤혼소 운전 특성에 대한 수치해석 연구)

  • Cho, Jungkeun;Park, Sangjun;Song, Soonho;Hur, Kwang-Beom
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.29-36
    • /
    • 2015
  • This study is an 1-D numerical study prior to modification of diesel engine for power plants to natural gas/diesel dual fuel engine using GT-Power with 1.5MW diesel engine for power generation. Natural gas injector was installed to intake manifold for dual fuel engine model. Effects on engine performance and characteristics were investigated when dual fuel is used in unmodified diesel engine. The analysis was done under 5 conditions from 0% to 40% of mixing rate on 720RPM engine speed. As a result of research, the engine performance was decreased as increasing ratio of natural gas. Engine brake power was decreased by 18.4% under 40% mixing rate condition. To clarify the reason, effects of injection timing and period were evaluated with DOE method. Considering this result, optimization was done for these parameters. Also, comparison between performances of dual fueled engine and diesel engine was made after optimizing the timing of injection by DOE method. As a result, engine brake power was decreased by 8.55% under mixing rate 40% condition showing 12.5% improvement.

Combustion Characteristics and On-site Performance Test of a Double-cone Partial Premixed Nozzle with Various Fuel hole Patterns (이중 콘형 부분예혼합 GT 연료노즐의 연소특성 및 발전플랜트 실증)

  • Kim, Han Seok;Cho, Ju Hyeong;Kim, Min Kuk;Hwang, Jeongjae;Lee, Won June;Min, Kyungwook;Kang, Do Won
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.22-28
    • /
    • 2021
  • Combustion characteristics were examined experimentally for a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. An original model and a variant with a different fuel injection pattern are tested to compare their combustion characteristics such as NOx, CO and stability in pressurized conditions with single burner-flame and in an ambient multi-flame conditions with multi-burners. Test results show that NOx emissions are smaller for the variant, whose number of fuel holes is reduced with the same total area of fuel holes, in ambient and pressurized single-flame conditions with single burner, which results from enhanced fuel/air mixing due to a higher penetration of fuel into the air stream. The multi-burnerflame test results show that NOx emissions are smaller for the variant due to reduced flame interactions, which, on the contrary, slightly reduces the stability margin. On-site test results fromin an actual power plants also show that NOx emissions are reduced for the variant, compared with the original one, which is in agreement with the lab test results stated above.

A Study on Spray and Mixing Characteristics of Unlike Impinging Triplet Injector (F-O-F, O-F-O) (충돌형(F-O-F, O-F-O) 실물형 분사기의 분무특성 및 혼합특성에 관한 연구)

  • 김종규;김승한;문일윤;이광진;서성현;한영민
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.195-203
    • /
    • 2003
  • Spray and Mixing characteristics of the unlike impinging triplet injectors (F-O-F, O-F-O) were investigated with the variation of the momentum ratio of oxidizer to fuel. The spray pattern was measured using a backlit stroboscopic photography technique, and mixing efficiency was measured using a mechanical patternator. Kerosene/water were used as a propellant simulant. From the experimental results, it is found that a O-F-O type injector has a good atomization. And as the momentum ratio increases, the mixing efficiency decreases rapidly.

  • PDF

A Numerical Study on Combustion-Stability Rating of Impinging-Jet Injectors Using Hot-Fire Simulation (연소해석을 이용한 충돌형 제트분사기의 연소 안정성 평가에 관한 수치적 연구)

  • Choi, Hyo-Hyun;Sohn, Chae-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.24-31
    • /
    • 2010
  • Combustion-stability rating of impinging-jet injector is conducted numerically using hot-fire simulation in a subscale chamber with the five-element injector head. A sample F(fuel)-O(dxidizer)-O-F impinging-jet injector is adopted. In this work, instantaneous chemical reaction is adopted for hot-fire simulation based on the assumption that mixing process of fuel and oxidizer streams is controlling. The model chamber was designed based on the methodologies proposed in the previous work regarding geometrical dimensions and operating conditions. The present stability boundaries are in a good agreement with air-injection and hot-fire experimental data. The proposed numerical method can be applied cost-effectively to stability rating of jet injectors when mixing of fuel and oxidizer jets is the dominant process in instability triggering.