• Title/Summary/Keyword: Mixing Enhancement

Search Result 237, Processing Time 0.028 seconds

CRITICAL HEAT FLUX ENHANCEMENT

  • Chang, Soon-Heung;Jeong, Yong-Hoon;Shin, Byung-Soo
    • Nuclear Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.753-762
    • /
    • 2006
  • In this paper, works related to enhancement of the CHF are reviewed in terms of fundamental mechanisms and practical applications. Studies on CHF enhancement in forced convection are divided into two categories, CHF enhancement of internal flow in tubes and enhancement of CHF in the nuclear fuel bundle. Methods of enhancing the CHF of internal flows in tubes include enhancement of the swirl flow using twisted tapes, a helical coil, and a grooved surface; promotion of flow mixing using a hypervapotron; altering the characteristics of the heated surface using porous coatings and nano-fluids; and changing the surface tension of the fluid using additives such as surfactants. In the fuel bundle, mixing vanes or wire wrapped rods can be employed to enhance the CHF by changing the flow distributions. These methods can be applied to practical heat exchange systems such as nuclear reactors, fossil boilers, fusion reactors, etc.

Enhancement of Mixing in an Underexpanded Sonic Jet by an Elliptic Jet Screech Reflector (과소팽창 음속 제트에서 타원형상의 제트 스크리치 반사판을 이용한 혼합증진)

  • Kim Jung Hoon;Kim Jin-Hwa;Yoo Jung Yul
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.221-224
    • /
    • 2002
  • A technique of mixing enhancement in an underexpanded sonic round jet is studied with fully expanded jet Mach number 1.5. Tonal sound, jet screech can be produced at some underexpansion pressure ratio in a sonic jet. Since the jet screech excites the initial Jet shear layer to change the flow, a reflector which focuses the jet screech near the nozzle lip is designed. The reflector has an elliptic shape of which two foci are located near the nozzle lip and the jet screech source region. Jet screech tone near the nozzle lip increases with the elliptic reflector and spreading of the jet largely increases. It is concluded that mixing enhancement of the jet with the elliptic reflector is attributed to large scale structures which are initially excited by the increased jet screech.

  • PDF

Comparison of the $SO_2$ Removal Efficiency by Mixing Enhancement Shape (혼합 촉진 장치의 형상에 따른 탈황효율 비교)

  • Chung, Jin-Do;Kim, Jang-Woo;Bae, Young-Peel
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • The aim of this study is to research applicable possibility of DSI (Dry Sorbent Injection) technique in $SO_2$ removal process using lab-scale facility based on 500MW in capacity coal-fired thermal power plant operated by South Korea N. Power Co., Ltd. To increase the $SO_2$ removal efficiency, it is considered the mixing enhancement as different shapes called lobed-plate and stepplate tested ultimately for optimum shape. Also it tested to analysis $SO_2$ removal efficiency by numbers of injection holes. At experimental it showed the $SO_2$ removal efficiency is higher using mixing enhancement than not installed mixing enhancement and case on the step-plate was shown the most $SO_2$ removal efficiency. Also, $SO_2$ removal efficiency was higher recording which will increase the injection holes case on not installed mixing enhancement. But, the $SO_2$ removal efficiency was higher 4 injection holes case on installed mixing enhancement.

PIV Investigations of the Flow Mixing Enhancement by Pulsatile Flow in a Grooved Channel (맥동유동에 의한 그루브 채널내 유동혼합 촉진에 관한 PIV 이용 연구)

  • 김동욱;김서영;이대영;이윤표
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.324-331
    • /
    • 2004
  • Particle Image Velocimetry (PIV) measurements have been carried out to investigate the pulsatile flow characteristics in a triangular grooved channel. The results showed that a vortex was generated at the tip of the groove and flowed into the groove rotating inside during the acceleration phase of the main stream promoting the mixing of the fluid. Then, at the deceleration phase of the main stream, the vortex entrained fluid from the relatively slow moving main stream to grow bigger than the groove size. Finally the vortex was ejected to the main stream carrying the fluid away from the groove, resulting in the enhancement of mixing between the stagnant fluid in the groove and the main stream in the channel. It was found that the fluid mixing enhancement is maximized when the pulsatile period is the same as the time duration which the vortex takes to grow larger enough to fill the groove and to be ejected to the main stream.

Limit of equivalence ratio on mixing enhancement in rich flames. (과농 예혼합화염의 혼합촉진에 대한 당량비 한계)

  • Kim, Jin-Kook;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.51-55
    • /
    • 1996
  • An experimental investigation has been made with the objective of studying the limits of equivalence ratio on mixing enhancement in a tone excited jet flame. The jet is pulsed by means of a loudspeaker-driven cavity and rich flames(${\phi}>1.5$) are used. The excitation frequency is chosen for the resonant frequency identified as a pipe resonance due to acoustic excitation. Methane, propane and butane are used to examine the effect of mixture property on the limit of equivalence ratio. Mixing is always enhanced in a methane/air flame as the excitation intensity increases. Constant lower limits of equivalence ratio for mixing enhancement are present in cases of propane/air and butane/air flames irrespective of mean mixture velocities. The equivalence ratio limits are also found to be related to the flame instability ; the lower Le, the higher the limit of equivalence ratio. Under the equivalence ratio limits, cellular flames are generated as the excitation intensity increases. The amplitude of oscillating velocity for generating a cellular flame in the equivalence ratio limit is proportional to a mean mixture velocity irrespective of fuels.

  • PDF

A Study on the Desulfurization Efficiency as a Variation of Flow Field Applyed a Mixing Enhancement Apparatus (혼합촉진장치 적용시 유동장 변화에 의한 탈황효율 연구)

  • Chung, J.D.;Kim, J.W.;SeomMun, J.
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.177-181
    • /
    • 2010
  • This paper has designed a mixing enhancement apparatus called Lobed-plate and Step-plate and comparatively calculated desulfurization efficiency of when its shape was changed. The parameters used at this time were the shape, SR ratio and the number of nozzles of the mixing enhancement apparatus and comparatively analyzed desulfurization efficiency according to these parameters. As a result, the Step-plate appeared as more highly by around 4% than Lobed-plate in desulfurization efficiency according to the shape of the mixing promotion apparatus, and when the desulfurization efficiency as a SR ratio is considered, it appeared highly by an average of 5% when the SR ratio is 3 rather than 2. As a result of comparing desulfurization efficiency by fixing the SR ratio and setting the number of nozzles as 4 pieces and 6 pieces, there was no big change in desulfurization efficiency when the SR ratio is 2, but it could be confirmed to improve by around 5% when the SR ratio is 3 when time passed 8 seconds.

NUMERICAL STUDY OF MIXING ENHANCEMENT EFFECT DUE TO THE CONFIGURATION RATIO OF CAVITY (Cavity 형상비에 따른 혼합 중대 효과의 수치적 연구)

  • Oh Juyoung;Bae Y.W.;Kim K.S.;Byun Y.H.;Lee J.-W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.245-248
    • /
    • 2005
  • SCRamjet is the key technology for hypersonic flight over mach number 6. It is characterized by very short residence time in combustor because its internal flow is supersonic. In this short time, the whole process of combustion must be done. Especially numerical study of combustor is important because air-fuel mixing rate influences the performance of combustor. Various methods of air-fuel mixing enhancement are proposed. Among these, cavity injection method is selected to study in this paper. The numerical study is conducted with the variation of the cavity length at the fixed height of unit and jet injection on the downstream of cavity.

  • PDF

EFFECT OF THE ZETA POTENTIAL CONTROL BY THE TRAPEZOIDAL ELECTRODES IN A MICROCHANNEL ON ENHANCEMENT MIXING-PERFORMANCE (마이크로 채널 내 사다리꼴 전극의 제타 포텐셜 변화에 따른 혼합효과 증대에 대한 수치해석적 연구)

  • Suh, Y.K.;Heo, H.S.;Kang, J.F.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.46-51
    • /
    • 2006
  • This paper presents the numerical results of fluid flow and mixing in a microfluidic device for electro-osmotic flow (EOF) with an trapezoidal electrode array on the bottom wall (ETZEA). Differently from previous EOF in a channel which only transports fluid in colloidal system. ETZEA can also be utilized to mix a target liquid with a reagent. In this study we propose a method of controlling fluid flow and mixing enhancement. To obtain the flow and mixing characteristics, numerical computations are performed by using a commercial code, CFX-10, and a self-made code LBM-D. It was found that the flow near the trapezoidal electrode in the ETZEA is of 3-D complex flows due to the zeta potential difference between the trapezoidal electrode and channel walls, and as a consequence the hetrogeneous zeta potential on the electrodes plays an important role in mixing the liquid.

Mixing Enhancement/Suppression of Separated-and-Reattaching Flow by an Upstream Small Object

  • IINVMA, Yusuke;FUNAKI, Jiro;HIRATA, Katsuya
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.106-110
    • /
    • 2004
  • Generally, flow around a bluff body such as a circular cylinder is complicated compared with that around a streamlined body because of the existence of separated shear layers. Long bluff body such as a flat blunt plate is more complicated than short bluff body, because of separated-and-reattaching flow on the after bodies.(omitted)

  • PDF

Heat Transfer Enhancement in a Circular Rod Using Mixing Vane (Mixing Vane에 의한 단일봉에서의 열전달 촉진)

  • Lee, Sang-Sub;Yoo, Seong-Yeon;Kim, Byeong-Chae;Kim, Eun-Kee;Lim, Duck-Jae;Chung, Chang-Kyu;Kim, Seoug-Beom
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.408-413
    • /
    • 2003
  • Naphthalene sublimation technique is used to investigate the average and local heat transfer from the circular rod, and to determine the average and local heat transfer from the circular rod with and without square wing type mixing vane in axial flow. The experiments are performed for a circular rod and flat plate with and without mixing vane in wind tunnel. In comparison with flat plate and circular rod in axial flow, averaged Nusselts number is increased 2 times as the increase of Reynolds number with mixing vane. Longitudinal vortex induced by square wing type has the stronger vortex strength, so square wing type vortex generator shows an effect further in downstream.

  • PDF