• 제목/요약/키워드: Mixing Angle

검색결과 311건 처리시간 0.031초

마이크로 채널 내 유도-전하 전기삼투에 의한 혼합 (Mixing in a Microchannel by using Induced-charge Electro-osmosis)

  • 전영훈;허영근;정원혁;수레수 알라파티;서용권
    • 한국가시화정보학회지
    • /
    • 제8권4호
    • /
    • pp.13-18
    • /
    • 2010
  • This paper presents an experimental study on the performance of a micro-mixer using AC electro-osmotic flow. The microchannel is made of PDMS for the side and top walls and glass patterned with ITO for the bottom wall. We first investigated the effect of the applied potential as well as the frequency on the slip velocity. We have found that the slip velocity is roughly proportional to the applied voltage in line with the Helmholtz-Smoluchowski equation and there is an optimum frequency at which the slip velocity becomes maximized. To find the optimum parameters for mixing device we tested our device for various design parameters. It turned out that the best mixing effect is obtained approximately when the electrode angle is $30^{\circ}$, electrode width $200\;{\mu}m$, and the frequency of power supply 700 Hz.

교반혼합체 공법의 도심지 흙막이벽 적용 (Application of Earth Retaining Structure using Soil Cement-mixing Method)

  • 김영석;조용상;강인철;김인섭
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.883-887
    • /
    • 2009
  • In this study, a new soil retaining system was proposed by soil cement mixing method. The new soil retaining system is based on deep cement mixing method by large diameter reinforcing blocks (piles). Large diameter reinforcing blocks (usually $\varnothing$300-500 mm) have the advantage to make reinforcements over a relatively short depth and thus reduce the amount of reinforcement necessary. A field case has been reviewed for actual application of the soil retaining system at a downtown site. Research was conducted to evaluate the behavior of the installed soil retaining wall, with reinforcing blocks (400 mm in diameter and 4 m in length) placed into a 10 m excavation wall at a $20^{\circ}$ angle. As a result, the potential for applying this method to the downtown excavation site was confirmed.

  • PDF

교반기용 임펠러가 달린 축의 베어링 지지점에 따른 진동특성 (Vibration Characteristics of Impeller Shaft for Mixing Machine According to the Positions of a Bearing Support)

  • 홍도관;안찬우;백황순;최석창;박일수
    • 한국기계가공학회지
    • /
    • 제8권3호
    • /
    • pp.68-73
    • /
    • 2009
  • This paper deals with the dynamic characteristics of the impeller shaft model which is the most important part in developing the resin mixing machine. The can is rotating by air motor in mixing machine. Then the end of shaft is fixed. The bearing support is to increase the fundamental natural frequency. The natural frequency analysis using finite element analysis software are performed on the imported commercial impeller shaft model. This paper presents calculated bearing stiffness of Soda, Harris and modified Harris formula considering contact angle according to bearing supported position. The most important fundamental natural frequency of the impeller shaft except bearing support is around 13.932 Hz. This paper presents one bearing and two bearings support position to maximize the 1st natural frequency. The maximized fundamental natural frequency is around 48.843 Hz in one bearing support and 55.52 Hz in two bearings support.

  • PDF

정수장 급속혼화설비 성능향상에 관한 연구 (A Study on the Performance Improvement of Flash-Mixer in Water-Treatment Plant)

  • 조인준;오상한;이상욱;손창호;정의준
    • 한국물환경학회지
    • /
    • 제27권2호
    • /
    • pp.210-217
    • /
    • 2011
  • In results of accomplishing fundamental study to improve the flocculant-mixing of the Flash-Mixer in Onsan Water-Treatment Plant at the small cost, We obtained 8.9% of mixing-efficiency from the field data and 3.2% of the characteristic flow-ratio as the available maximum volume-ratio in this Water-Treatment Plant. The optimum elements with the deflector diameter of 400 mm and deflector angle of $145^{\circ}$ at the flow ratio of 3.2% could be obtained from the expanded study on the ground of the fundamental study. Finally, the efficiency could be improved about 510% from 8.9% to 45.4% and the average turbidity could be improved about 14%.

쇄석과 저회의 혼합다짐말뚝의 전단강도와 Clogging 현상 규명 (Characteristics on Shear Strength and Clogging Phenomenon of Bottom Ash and Rammed Aggregate Mixture Compaction Pile)

  • 이동엽;강형남;천병식
    • 한국지반환경공학회 논문집
    • /
    • 제11권3호
    • /
    • pp.33-41
    • /
    • 2010
  • 본 논문에서는 모래에 비해 배수성이 떨어지지 않으며 지지력이 우수할 것으로 판단되는 쇄석을 사용하여 연약점성토지반에서 쇄석다짐말뚝을 시공 후 쇄석간의 공극에 점토입자의 유입으로 인해 배수능을 상실하는 Clogging 현상에 대한 대체방안을 규명하고자 하였다. 이러한 Clogging 현상의 억제방안으로 국내 화력발전소에서 발생되는 산업폐기물인 석탄회 중 재활용 방안이 미비한 저회의 활용 가능성을 높여 보고자 쇄석과 저회의 적정 혼합비의 다짐시험에 따라 대형직접전단시험을 실시하여 최대전단강도와 내부마찰각을 파악하고, 그에 따른 Clogging 현상의 특성에 대해 실험을 실시하였다. 따라서, 쇄석과 저회의 혼합비에 따른 지지력 및 강도특성을 파악하여 적정 혼합비를 찾고, 현장과 같은 Clogging 현상을 육안으로 확인할 수 있도록 모형토조를 제작하였으며 적정 혼합비에 따른 배수능을 비교 분석하였다. 실험결과 각 혼합비에 따른 대형직접전단시험에서 쇄석과 저회의 혼합비가 80:20일 때 전단강도와 내부마찰각이 가장 크게 나타났으며 Clogging 시험에서도 쇄석 100%의 다짐말뚝보다 Clogging 억제 효과가 점진적으로 뛰어남을 확인하였다.

액체로켓용 터보펌프 인듀서/임펠러 상호작용에 대한 연구 (Numerical Studies on the Inducer/Impeller Interaction of a Liquid Rocket Engine Turbopump System)

  • 최창호;차봉준;양수석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.33-40
    • /
    • 2002
  • The hydraulic performance analysis of a pump system composed of an inducer and impeller for the application on turbopumps has been performed using three-dimensional Wavier-Stokes equations. A simple mixing-plane method and a full interaction method are used to simulate inducer/impeller interactions. The computations adopting two methods show almost similar results due to the weak interaction between the inducer and impeller since the inducer outlet blade angle is rather small. But, because the inducer and the impeller are closely spaced near the shroud region at the interface, flow angles at the impeller inlet show different results between two methods. Thus, the full interaction method predicted about $2\%$ higher pump performance than the mixing-plane method. And the effects of prewhirl at the impeller inlet are also investigated. As the inlet flow angle is increased, the head rise and the efficiency are decreased. The computational results are compared with experimental ones. The computational results at the design point show good agreements with experimental data. But the computation was found to under-predict the head rise at high mass flow rates compared to the experiment, further study must be followed in terms of the computation and experiment.

  • PDF

액체로켓용 터보펌프 인듀서/임펠러 상호작용에 대한 연구 (Numerical Studies on the Inducer/Impeller Interaction Liquid Rocket Engine Turbopump)

  • 최창호;김진한
    • 한국유체기계학회 논문집
    • /
    • 제6권4호
    • /
    • pp.50-57
    • /
    • 2003
  • The hydraulic performance analysis of a turbopump with an inducer for a liquid rocket engine was performed using three-dimensional Navier-Stokes equations. A simple mixing-plane method and a full interaction method were used to simulate inducer/impeller interaction. Two methods show almost similar results due to the weak interaction between the inducer and impeller since the inducer outlet blade angle is lather small. But, when the inducer and the impeller are closely spaced near the shroud region, flow angles at the impeller inlet show different results between two methods. Thus, the full interaction method predicts about $2\%$ higher pump performance than the mixing-plane method. And the effects of prewhirl at the impeller inlet are also investigated. As the inlet flow angle is increased, the head rise and the efficiency are decreased. The computational results are compared with measured ones. The computational results at the design point show good agreements with experimental data, however under-predicts the head rise at high mass flow rates compared to the experiment.

스월 동축형 분사기의 리세스 길이에 따른 혼합특성에 관한 수치적 연구 (A Numerical Study on Mixing Characteristics for Recess Length of Swirl Coaxial Injector)

  • 김영준;홍문근;이수용;손채훈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.74-77
    • /
    • 2011
  • 고성능 다단연소방식 액체 로켓엔진에 사용되는 기체 중심 스월 동축형 분사기의 리세스 길이 변화에 따른 혼합특성을 수치해석을 통해 연구를 수행하였다. 실제 추진제의 상(phase)은 기체(산화제)-액체(연료)형이지만, 모사조건을 통해 기체-기체로 고려하였다. 추진제의 확산각도를 측정하기 위해 분사기 출구에서의 속도 분포 및 추진제의 분무형상을 분석하였다. 리세스 길이가 증가함에 따라 축방향 속도는 증가하는 반면, 탄젠셜 방향 속도는 감소하였다. 이 결과 확산각도가 감소하는 정성적인 특징을 확인하였다.

  • PDF

Sulfonated Polystyrene Ionomers Containing 4-Aminobenzoic Acid Studied by a Small-Angle X-Ray Scattering Technique

  • Song, Ju-Myung;Hong, Min-Chul;Kim, Joon-Seop;Jikang Yoo;Yu, Jeong-A;Kim, Whangi
    • Macromolecular Research
    • /
    • 제10권6호
    • /
    • pp.304-310
    • /
    • 2002
  • In a recent study by the same authors using a DMTA (Dynamic Mechanical Thermal Analyzer), it was found that the 4-aminobenzoic arid (ABA) molecules acted as either a neutralizing agent, or a plasticizer, or a filler, depending on the order of mixing of poly(styrene-co-styrenesulfonic acid) (PSSA), ABA, and NaOH. Subsequent to that study, we here pursued the same topic, i.e., the effect of the addition of CsOH (instead of NaOH) and ABA on the morphology of PSSA, but this time, by using a small-angle X-ray scattering (SAXS) technique. In line with the previous results, the present study with the SAXS technique verified that the order of mixing has a significant effect on the morphology of ionomers. In addition, with the SAXS data and the density values of the ionomers, we attempted to calculate both the number of sulfonate ionic groups per multiplet and the size of the multiplet of the ionomer.

디젤 엔진 연료 분사 타이밍 구간에서의 흡기 포트 스월비 1D 컴퓨터 시뮬레이션 (1D Computer Simulation of Diesel Engine Intake Port Swirl Ratios Considering the Fuel Injection Timing Range)

  • 오대산;이충훈
    • 한국분무공학회지
    • /
    • 제26권2호
    • /
    • pp.81-87
    • /
    • 2021
  • This study was performed to calculate the swirl ratio of a diesel engine intake port by a 1D computer simulation under actual engine operating conditions. The swirl ratio of the intake port was simulated according to the change of the engine speed during the operation of the motoring without fuel injection. The swirl ratio of the intake port was simulated according to changes in the crank angle during the four-cycle operation of intake, compression, expansion and exhaust. The swirl ratio represented by the three regions of the piston, center and squish was simulated. Among the three regions, the piston-region swirl ratio is important for effective air-fuel mixing in the engine cylinder. In particular, it was confirmed during the simulation that the piston swirl ratio before and after the compression top dead center (TDC) point when fuel is injected in the DI diesel engine can have a significant effect on the mixing of air and fuel. It was desirable to set the average piston swirl ratio over a crank angle section before and after compression TDC as the representative swirl ratio of the cylinder head intake port according to the change of the engine speed.