• Title/Summary/Keyword: Mixing&Transport

Search Result 263, Processing Time 0.021 seconds

Effects of Mixing Characteristics at Fracture Intersections on Network-Scale Solute Transport

  • 박영진;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.69-73
    • /
    • 2000
  • We systematically analyze the influence of fracture junction, solute transfer characteristics on transport patterns in discrete, two-dimensional fracture network models. Regular lattices and random fracture networks with power-law length distributions are considered in conjunction with particle tracking methods. Solute transfer probabilities at fracture junctions are determined from analytical considerations and from simple complete mixing and streamline routing models. For regular fracture networks, mixing conditions at fracture junctions are always dominated by either complete mixing or streamline routing end member cases. Moreover bulk transport properties such as the spreading and the dilution of solute are highly sensitive to the mixing rule. However in power-law length networks there is no significant difference in bulk transport properties, as calculated by assuming either of the two extreme mixing rules. This apparent discrepancy between the effects of mixing properties at fracture junctions in regular and random fracture networks is explained by the statistics of the coordination number and of the flow conditions at fracture intersections. We suggest that the influence of mixing rules on bulk solute transport could be important in systematic orthogonal fracture networks but insignificant in random networks.

  • PDF

Analysis of the Ozone Transport and Seasonal Variability in the Tropical Tropopause Layer using MERRA-2 Reanalysis Data (MERRA-2 재분석자료를 활용한 적도 대류권계면층의 오존 수송 및 계절변동성 분석)

  • Ryu, Hosun;Kim, Joowan
    • Atmosphere
    • /
    • v.30 no.1
    • /
    • pp.91-102
    • /
    • 2020
  • MERRA-2 ozone and atmospheric data are utilized to test the usefulness of reanalysis-based tracer transport analysis for ozone in the tropical tropopause layer (TTL). Transport and mixing processes related to the seasonal variation of TTL ozone are examined using the tracer transport equation based on the transformed Eulerian mean, and the results are compared to previously proposed values from model analyses. The analysis shows that the seasonal variability of TTL ozone is mainly determined by two processes: vertical mean transport and horizontal eddy mixing of ozone, with different contributions in the Northern and Southern Hemispheres. The horizontal eddy mixing process explains the major portion of the seasonal cycle in the northern TTL, while the vertical mean transport dominates in the southern TTL. The Asian summer monsoon likely contributes to this observed difference. The ozone variability and related processes in MERRA-2 reanalysis show qualitatively similar features with satellite- and model-based analyses, and it provides advantages of fine-scale analyses. However, it still shows significant quantitative biases in ozone budget analysis.

Impact of mixer design to reactants mixing characteristics and gas-phase reactions in the mixing region of a hydrocarbon reformer (개질기 혼합영역 형상에 따른 반응물의 혼합도 및 가스상 반응특성에 대한 수치해석적 연구)

  • Kim, Sunyoung;Bae, Joongmyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.99.1-99.1
    • /
    • 2011
  • Reactant mixing has a critical role in ensuring reformate quality and an important design objective is to achieve sufficiently complete mixture of reactants. For that purpose it is required to understand the coupled transport-kinetics phenomena in the mixing region. Three-dimensional computational fluid dynamics model was developed and validated in previous works. The mixing characteristics in various alternatives of a prototype mixing chamber were compared, and then a reduced reaction kinetics was applied to two extreme designs for investigating the impact of gas-phase reactions. Both designs did not reach threshold ethylene mole fraction of 0.001, but surprisingly more ethylene was generated in the design having better mixing characteristics. The presentation will deliver the development process of coupled transport and kinetics model briefly and the detailed information about the mixing characteristics and gas-phase reactions in two mixer designs.

  • PDF

Effects of Fracture Intersection Characteristics on Transport in Three-Dimensional Fracture Networks

  • Park, Young-Jin;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.27-30
    • /
    • 2001
  • Flow and transport at fracture intersections, and their effects on network scale transport, are investigated in three-dimensional random fracture networks. Fracture intersection mixing rules complete mixing and streamline routing are defined in terms of fluxes normal to the intersection line between two fractures. By analyzing flow statistics and particle transfer probabilities distributed along fracture intersections, it is shown that for various network structures with power law size distributions of fractures, the choice of intersection mixing rule makes comparatively little difference in the overall simulated solute migration patterns. The occurrence and effects of local flows around an intersection (local flow cells) are emphasized. Transport simulations at fracture intersections indicate that local flow circulations can arise from variability within the hydraulic head distribution along intersections, and from the internal no flow condition along fracture boundaries. These local flow cells act as an effective mechanism to enhance the nondiffusive breakthrough tailing often observed in discrete fracture networks. It is shown that such non-Fickian (anomalous) solute transport can be accounted for by considering only advective transport, in the framework of a continuous time random walk model. To clarify the effect of forest environmental changes (forest type difference and clearcut) on water storage capacity in soil and stream flow, watershed had been investigated.

  • PDF

Study on Mixing Enhancement of a Y-channel Micromixer with Obstacles (Y-채널 마이크로믹서의 혼합 증대에 관한 연구)

  • Choi Jangwook;Choi Hyung-il;Lee Dong-ho;Lee Dohyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1369-1376
    • /
    • 2005
  • Effective mixing gives strong advantageous impact on microfluidic applications since mixing is in general very slow process motivated by molecular diffusion transport only on the micro-scale. In this work, the mixing characteristics are analyzed in a Y-channel micromixer with obstacles. For the through analysis, our laboratory in-house unstructured grid CFD code is validated through solving a concentration transport in a uniform microchannel. The solutions well correspond to both exact solutions and those from MemCFD. Mixing in a Y-channel micromixer with obstacles is numerically investigated by the in-house code to search the optimal radius and layout of obstacles. From the simulations, the mixing efficiency appears to be proportional to the magnitude of the formation of lateral velocity component. It is also shown that the asymmetric layout and radius enlargement of obstacles greatly improves mixing efficiency.

The Transport of Radionuclides Released From Nuclear Facilities and Nuclear Wastes in the Marine Environment at Oceanic Scales

  • Perianez, Raul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.321-338
    • /
    • 2022
  • The transport of radionuclides at oceanic scales can be assessed using a Lagrangian model. In this review an application of such a model to the Atlantic, Indian and Pacific oceans is described. The transport model, which is fed with water currents provided by global ocean circulation models, includes advection by three-dimensional currents, turbulent mixing, radioactive decay and adsorption/release of radionuclides between water and bed sediments. Adsorption/release processes are described by means of a dynamic model based upon kinetic transfer coefficients. A stochastic method is used to solve turbulent mixing, decay and water/sediment interactions. The main results of these oceanic radionuclide transport studies are summarized in this paper. Particularly, the potential leakage of 137Cs from dumped nuclear wastes in the north Atlantic region was studied. Furthermore, hypothetical accidents, similar in magnitude to the Fukushima accident, were simulated for nuclear power plants located around the Indian Ocean coastlines. Finally, the transport of radionuclides resulting from the release of stored water, which was used to cool reactors after the Fukushima accident, was analyzed in the Pacific Ocean.

A Study on the Change of Energy Consumption and Transport Capacity Depending upon the Train Operation Mixing Slow Trains and Fast Trains (급행.완행 결합 운행에 따른 수송량 및 소비 에너지의 변화)

  • Yang, Kyeong-Rok;Kim, Jae-Hwan;Jin, In-Su;Ryu, Hyung-Sun;Kim, Si-Ku;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1448-1450
    • /
    • 2000
  • The train system in a big city has the serious problem of the shortage of transport capacity. And because of the nowaday energy crisis, the research to reduce the energy consumption in the train system has been progressed. In this paper, it is expected that the train operation mixing slow trains and fast trains enable us to increase transport capacity and to reduce energy consumption. In this paper, the train operation mixing slew trains and fast trains is modelled and the change of energy consumption and transport capacity depending upon the operation formation is simulated.

  • PDF

Effect of Primary Nozzle Configuration on the Flow and Transfer Characteristics in an Ejector System for Pellet Transfer (펠릿 이송용 이젝터의 구동노즐 구성에 따른 유동 및 이송특성에 관한 실험적 연구)

  • Kim, Keum-Kyu;Kim, Eui-Soo;Kang, Shin-Myoung;Lee, Jee-Keun;Rho, Byung-Joon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.49-59
    • /
    • 2008
  • The effects of design parameters on the pellet transport rate in the ejector system which is widely used in the production processes of automotive parts were investigated experimentally. The primary nozzle geometry, the area ratio (R) of nozzle exit cross-sectional area to mixing chamber cross-sectional area and the distance (S) from primary nozzle exit to mixing chamber entrance were considered as the design parameters. The area ratios of the primary nozzle were varied from R=0.10 to R=0.25, 0.30, 0.40 and 0.55. The primary nozzle was positioned at the non-dimensional distance (S/D) of 1.30, 1.87, 2.44, 3.00 and 3.75, normalized using the mixing chamber diameter (D). The design parameters were determined to run with high efficiency by measuring the pellets transport rate. The geometry and the area ratio (R) of the primary nozzle had an effect on the pellet transport rate of the ejector system, and the area ratio of R=0.3 was carefully selected after taking the minimum fluidization velocity and transport rate of applied pellets into account. The higher pellet transport rate with the variation of the distance (S/D) was observed at S/D of 2.44.

Simulation of Pollutants Transport using 2-D Advection-Dispersion Model near Intake Station (2차원 이송-확산모형을 이용한 취수장 인근에서의 오염물질의 혼합거동 모의)

  • Kim, Jae-Dong;Kim, Young-Do;Lyu, Si-Wan;Seo, Il-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.791-794
    • /
    • 2008
  • The transport and dispersion of pollutants in natural river is a principal issue in intake station management. To study the pollutant transport in natural rivers, the effect of meandering and confluence of tributary on mixing process have to analyzed. The objective of this study is to simulate the mixing and transport of pollutants for operating water gate of Nakdong Estuary Barrage around the intake station. Mulgeum intake station being used as drinking water sources for Pusan. The flow around the intake station is influenced by operating water gate of Nakdong Estuary Barrage which is located downstream. The water gate system includes ten individual gates. The minor gate is usually opened according to elevation of the sea. When the river flow increases, the main water gate is opened. Daepo stream, tributary of the Nakdong river, is on opposite side of the intake station. The pollutants from Daepo stream often flows into the intake station acoording to the flow pattern. In this study, based on this simulation results, proper water gate operation which can minimize negative impact will be provided.

  • PDF

An Experimental Study on the High Strength Concrete Properties for Mixing Methods and Elapsed time (고강도 콘크리트의 배합방법과 운반특성에 관한 실험적 연구)

  • 권녕호;안재현;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.7-12
    • /
    • 1992
  • The aim of this study is to develop economical High-Strength and High-Quality Concrete, and to assure quality control of Concrete in the field. For this purpose, Five types of Mixing Methods are examined and the relationship between slump loss and slump recovery by transport is studied. As a result, workability and strength are dependent on the Mixing Method, although the Mixing proportions are same, Also, adding admixture in the field is proposed as an alternative to consider the relationship between slump loss and slump recovery.

  • PDF