• 제목/요약/키워드: Mixed-mode loading condition

검색결과 22건 처리시간 0.023초

A Study on Mixed Mode Crack Initiation under Static Loading Condition

  • Koo, Jea-Mean
    • International Journal of Safety
    • /
    • 제2권1호
    • /
    • pp.1-6
    • /
    • 2003
  • In this paper, several different fracture criteria using the Eftis and Subramanian's stress solutions [1] are compared with the printed experimental results under different loading conditions. The analytical results of using the solution with non-singular term show better than without non-singular in comparison with the experimental data. And maximum tangential stress criterion (MTS) and maximum tangential strain energy density criterion (MTSE) can get useful results for several loading conditions.

Prediction of through the width delamination growth in post-buckled laminates under fatigue loading using de-cohesive law

  • Hosseini-Toudeshky, Hossein;Goodarzi, M. Saeed;Mohammadi, Bijan
    • Structural Engineering and Mechanics
    • /
    • 제48권1호
    • /
    • pp.41-56
    • /
    • 2013
  • Initiation and growth of delamination is a great concern of designers of composite structures. Interface elements with de-cohesive constitutive law in the content of continuum damage mechanics can be used to predict initiation and growth of delamination in single and mixed mode conditions. In this paper, an interface element based on the cohesive zone method has been developed to simulate delaminatoin growth of post-buckled laminate under fatigue loading. The model was programmed as the user element and user material by the "User Programmable Features" in ANSYS finite element software. The interface element is a three-dimensional 20 node brick with small thickness. Because of mixed-mode condition of stress field at the delamination-front of post-buckled laminates, a mixed-mode bilinear constitutive law has been used as user material in this model. The constitutive law of interface element has been verified by modelling of a single element. A composite laminate with initial delamination under quasi-static compressive Loading available from literature has been remodeled with the present approach. Moreover, it will be shown that, the closer the delamination to the free surface of laminate, the slower the delamination growth under compressive fatigue loading. The effects of laminate configuration on delamination growth are also investigated.

황(黃)라왕재(Shorea spp.)의 모드 I, 모드 II 및 혼합(混合)모드 하중시(荷重時) 파괴기준(破壞基準)에 관(關)한 연구(硏究) (Studies on Fracture Criterion in Yellow Lauan(Shorea spp.) under Mode I, Mode II and Mixed Mode Loading)

  • 심국보;이전제;정희석
    • Journal of the Korean Wood Science and Technology
    • /
    • 제20권2호
    • /
    • pp.61-72
    • /
    • 1992
  • This study was carried out to investigate the fracture behavior and the fracture criterion of yellow lauan(Shorea spp.), when has used for furniture and wood structures, and to offer a reliability for wood structure and basic data for wood fracture criterion in experiments which are fracture tested under mode I, mode II and mixed mode loading condition. The results were summarized as follows; 1. Fractures in specimens which have inclined grain in yellow lauan procedeed from crack tip in the radial direction along the grain. 2. In yellow lauan, $K_{IC}RL$ was 42.1kg/$cm^{3/2}$ and $K_{IIC}RL$ was 15.8kg/$cm^{3/2}$. 3. The fracture criteria of lauan were; ($K_I/K_{IC}$)+($K_{II}/K_{IIC}$)=1 in RL system with inclined grain at $45^{\circ}$, ($K_I/K_{IC}$)+$(K_{II}/K_{IIC})^2$=1 with inclined grain at $15^{\circ}$ and $(K_I/K_{IC})^2$+$(K_{II}/K_{IIC})^2$=1 with inclined grain at $30^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$, respectively. 4. The fracture criterion of wood could vary with the species, and the load applying condition. In order to measure the fracture criterion strictly, along with standardization of specimen geometry a large amount of experimental data is needed. 5. $K_{IC}$(critical stress intensity factor) can be predicted by grain angle. As the grain inclined angle increased, $K_{IC}$ and $K_{IIC}$ are increased.

  • PDF

Characteristic of Fatigue Crack Behavior on the Mixed-Mode in Aluminum Alloy 5083-O

  • Kim, Gun-Ho;Cho, Kyu-Chun;Lee, Ho-Yeon;Won, Young-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권7호
    • /
    • pp.899-906
    • /
    • 2011
  • Generally, load conditions of machine or structure in fatigue destruction is occurred not under single load conditions but under mixed load conditions. However, the experiment under mixing mode is insufficient because of no having test standard to the behavior of crack under mixing mode and variety of test methods, and many tests are required. In this paper measured crack direction path by created figure capture system when a experiment. Also, we studied by comparison the behavior of crack giving the change of stress ratio and inserting beach mark. Through the test under mixing mode, advancing path of crack is indicated that advancing inclined angle ${\Theta}$ (direction of specimen length) has increased depending on the increase of mixed mode impaction. It is indicated that according to the increase of mixed mode loading condition impaction under mixing mode, advancing speed of crack gets slow. Also, we found that inner crack(cross section of specimen) is progressed more rapidly than outer crack based on data through beach mark.

MMB시험에 의한 평직 CFRP/GFRP 적층판 혼합모드 층간분리의 실험적 평가 (The Experimental Evaluation of the Mixed Mode Delamination in Woven CFRP/GFRP Laminates under MMB Test)

  • 곽정훈;강지웅;권오헌
    • 한국안전학회지
    • /
    • 제28권4호
    • /
    • pp.14-18
    • /
    • 2013
  • Blades of horizontal axis are nowadays made of composite materials. Generally, composite materials satisfy design provides lower weight and good stiffness, while laminate composites have often damages as like the delamination and cracks at the interface of laminates. The box spar and tail parts of a blade are composed of the CFRP/GFRP hybrid laminate composites. However, delamination and the interfacial crack often occur in the interface of CFRP/GFRP hybrid laminate composites under the mixed mode fracture condition, especially mode I and mode II. Therefore, there is a need for the evaluation of the mixed mode fracture behavior during the delamination of CFRP/GFRP hybrid laminates. This study shows the experimental results for the delamination fracture toughness in CFRP/GFRP hybrid laminate composites. Fracture toughness experiments and estimation are performed by using DMMB(Dissimilar mixed mode bending) specimen. The materials used in the test are a commercial woven type CFRP(Carbon fiber reinforced plastic) prepreg(CF3327) and UD type GFRP(Glass fiber reinforced plastic) prepreg(HD224A). A CFRP/GFRP hybrid laminate composite is composed by the 10 plies CFRP and GFRP prepreg for DMMB. A thickness of CFRP and GFRP layer is 2.5mm and 3.0mm, respectively. Also the fulcrum location which is a loading parameter is changed from 80 to 100mm on the specimen of length 120mm because it defines the ratio of mode I to mode II. In this study, the effects of the fulcrum location are evaluated in the viewpoint of energy release rate in mode I and mode II contribution. The results show that the delamination crack initiates at higher displacement and lower load according to the increase of the fulcrum location ratio. And the variation of the energy release rate for mode I and II contributions for the mode mixity are shown.

박용 구조물용 일반압연강 용접부의 피로균열 전파거동에 미치는 $K_{II}$의 영향 (Effects of $K_{II}$ on fatigue crack propagation behavior of wedzone in generally rolled steel for marine structure)

  • 한문식;김상철
    • Journal of Welding and Joining
    • /
    • 제6권3호
    • /
    • pp.43-55
    • /
    • 1988
  • An experimental study was carried out to identify the fatigue fractue behavior of weld zone in generally rolled steel for marine structure. The bending an shear loads were applied simultaneously on the specimens to simulate real load condition for marine structure. The effect of the stress intensity factor under mode I with II loading condition on the initiation and the propagation of a crack were investigated, with particular emphaiss on mode II. When the $K_{II}$ stress intensiy factor in mode II was applied under mode I load condition, the growth behavior of a crack seems to be affected mainly by the anisotropic characteristic of materials. Especially, when the crack was located in and near the weld zone and parallel to th weld line, the propagation behaviour was turned out to be quite different from that of the base metal along the direction transverse to the weld line. In general, the propagation veiocity of the cracks in and near the weld zone was found to be slower that the velocity in base metal.

  • PDF

알루미나 튜브의 인장/비틀림 조합하중하의 파괴거동 (Fracture Behaviors of Alumina Tubes under Combined Tension/Torsion)

  • 김기태;서정;조윤호
    • 한국세라믹학회지
    • /
    • 제28권1호
    • /
    • pp.20-28
    • /
    • 1991
  • Fracture of Al2O3 tubes for different loading path under combined tension/torsion was investigated. Macroscopic directions of crack propagation agreed well with the maximum principal stress criterion, independent of the loading path. However, fracture strength from the proportional loading test($\tau$/$\sigma$= constant) showed either strengthening or weakening compared to that from uniaxial tension, depending on the ratio $\tau$/$\sigma$. The Weibull theory was capable to predict the strengthening of fracture strength in pure torsion, but not the weakening in the proportional loading condition. The strengthening or weakening of fracture strength in the proportional loading condition was explained by the effect of shear stresses in the plane of randomly oriented microdefects. Finally, a new empirical fracture criterion was proposed. This criterion is based on a mixed mode fracture criterion and experimental data for fracture of Al2O3 tubes under combined tension/torsion. The proposed fracture criterion agreed well with experimental data for both macroscopic directions of crack propagation and fracture strengths.

  • PDF

이방성재료에 대한 코스틱스법의 적용 (Application of the Method of Caustics into Anisotropic Materials)

  • 백명철;최선호;황재석;김원현
    • 대한기계학회논문집
    • /
    • 제16권12호
    • /
    • pp.2226-2240
    • /
    • 1992
  • 본 연구에서는 이방성체에 대한 구체적인 코스틱스 실험법을 확립하기 위하여 다음과 같은 연구를 수행 하였다. 첫째, 이방성체에 대한 코스틱스상 및 초기곡선의 사상방정식을 기하광학 및 Sih의 응력장을 이용하여 구하고, 이 식에 의한 이론상을 여러가지 경계조건하에서 컴퓨터 그래픽 하여 유도한 사상방정식의 타당성을 검토 하 였다.둘째, 본 논문에서 개발한 두 가지 종류의 직교이방성체를 사용하여 실험을 수행하고 실험에 의한 코스틱스상을 이론상과 비교, 검토 하였다.셋째, 이방성체의 코스틱스상으로부터 응력확대계수를 구하는 방법을 제시하고 이 방법을 실제 시편에 적용하여 신뢰 할수 있는 결과를 얻는 초기곡선의 범위를 결정 하였다. 그리고 이 범위에서 구한 응력확대 계수 값을 경계요소법을 이용한 변위외삽법에 의한 결과와 비 교함으로써 본 논문에서 제시하는 방법이 이방성체의 응력확대계수를 구하는 한 방법 으로 유효하게 사용될 수 있음을 밝혔다.

초기 균열길이 및 섬유방향이 CFRP/GFRP 하이브리드 적층재의 층간 파괴에 미치는 영향 (The Effects of the Initial Crack Length and Fiber Orientation on the Interlaminar Delamination of the CFRP/GFRP Hybrid Laminate)

  • 권오헌;권우덕;강지웅
    • 한국안전학회지
    • /
    • 제28권1호
    • /
    • pp.12-17
    • /
    • 2013
  • Considering the wind power system and the rotor blades which are composed of much technology, the wind power blade would be the most dangerous part because it revolves at high speed and weighs about dozens of tons, if the accident happens. Therefore, the light weight composite materials have been replacing as substitutional materials. The object of this study is to examine the delamination and damage for CFRP/GFRP hybrid composite that is used for strength improvement of a wind power blade. The influence of the initial crack length and fiber orientation for the interlaminar delamination was exposed for the blade safety. Plain woven CFRP instead of GFRP was inserted into the layer of the box spar for improving the strength and blade life. DCB(Double Cantilever Beam) specimen was used for evaluating fracture toughness and damage evaluation of interlaminar delamination. The material used in the experiment is a commercial material known as CF 3327 EPC in plain woven carbon prepreg(Hankuk Carbon Co.) and UD glass fiber prepreg(Hyundai Fiber Co.). From the results, crack growth rate is not so different according to the variation of the initial crack length. Mode I interlamainar fracture toughness of fiber direction $0^{\circ}$ is higher than that of $45^{\circ}$. Interlaminar fracture has an effect on fiber direction and K decreased with lower value according to increasing initial crack length. Also energy release rate fracture toughness was evaluated because CFRP/GFRP hybrid composite with a different thickness is under the mixed mode loading condition. The interlaminar fracture was almost governed by mode I fracture even though the mixed mode.

알루미나 튜브의 인장/비틀림 조합하중하의 파괴거동 (Fracture Behaviors of Alumina Tubes under Combined Tension/Torsion)

  • 김기태;서정;조윤호
    • 한국세라믹학회지
    • /
    • 제28권1호
    • /
    • pp.19-19
    • /
    • 1991
  • 인장/비틀림 조합을력하에서 하중경로에 따른 Al₂O₃튜브 시편의 파괴거동을 조사하였다. 인장 후 비틀림을 한 하중경로(I)에서의 거시적인 균열의 전파방향과 파괴강도는 최대 주응력 파괴조건과 일치하였다. 전단응력(τ)/인장응력(σ)의 비가 일정한 하중경로(Ⅱ)에서의 거시적인 균열의 전파 방향은 최대 주응력 파괴조건과 일치한, 최대 주응력 파괴강도는τ/ σ의 비에 다라 일축인장 파괴 강도보다 증가 또는 감소하였다. Welbull 이론은 수누 비틀림에서의 최대 주응력 파괴 강도가 일죽이장 파괴강도보다 증가함은 예측하였으나, 하중경로(Ⅱ)에서 파괴 강도가 감소함은 예측할 수 없었다. 파괴강도가 일죽인장 파과강도보다 증가 또는 감소하는 현상은 미세조직의 관찰로 부터 미세결함면에 존재하는 전단응력이 파괴에 미치는 영향으로 설명하였다. 끝으로, 인위적 균열에서의 파괴 조건과 인장/비틀림 조합응력하의 Al₂O₃튜브 시편의 파괴 실험치에 근거한 새로운 경험식을 제안하였다. 제안된 파괴 조건식은 하중경로에 따른거시적인 균열의 전파방향과 파괴강도의 실험치와 잘 일치하였다.