• Title/Summary/Keyword: Mixed linear model

Search Result 420, Processing Time 0.027 seconds

Review of Spatial Linear Mixed Models for Non-Gaussian Outcomes (공간적 상관관계가 존재하는 이산형 자료를 위한 일반화된 공간선형 모형 개관)

  • Park, Jincheol
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.353-360
    • /
    • 2015
  • Various statistical models have been proposed over the last decade for spatially correlated Gaussian outcomes. The spatial linear mixed model (SLMM), which incorporates a spatial effect as a random component to the linear model, is the one of the most widely used approaches in various application contexts. Employing link functions, SLMM can be naturally extended to spatial generalized linear mixed model for non-Gaussian outcomes (SGLMM). We review popular SGLMMs on non-Gaussian spatial outcomes and demonstrate their applications with available public data.

Analysis of Field Test Data using Robust Linear Mixed-Effects Model (로버스트 선형혼합모형을 이용한 필드시험 데이터 분석)

  • Hong, Eun Hee;Lee, Youngjo;Ok, You Jin;Na, Myung Hwan;Noh, Maengseok;Ha, Il Do
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.361-369
    • /
    • 2015
  • A general linear mixed-effects model is often used to analyze repeated measurement experiment data of a continuous response variable. However, a general linear mixed-effects model can give improper analysis results when simultaneously detecting heteroscedasticity and the non-normality of population distribution. To achieve a more robust estimation, we used a heavy-tailed linear mixed-effects model for a more exact and reliable analysis conclusion than a general linear mixed-effects model. We also provide reliability analysis results for further research.

A Comparison of Influence Diagnostics in Linear Mixed Models

  • Lee, Jang-Taek
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.125-134
    • /
    • 2003
  • Standard estimation methods for linear mixed models are sensitive to influential observations. However, tools and concepts for linear mixed model diagnostics are rudimentary until now and research is heavily demanded in linear mixed models. In this paper, we consider two diagnostics to evaluate the effects of individual observations in the estimation of fixed effects for linear mixed models. Those are Cook's distance and COVRATIO. Results of our limited simulation study suggest that the Cook's distance is not good statistical quantity in linear mixed models. Also calibration point for COVRATIO seems to be quite conservative.

A Study for Recent Development of Generalized Linear Mixed Model (일반화된 선형 혼합 모형(GENERALIZED LINEAR MIXED MODEL: GLMM)에 관한 최근의 연구 동향)

  • 이준영
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.541-562
    • /
    • 2000
  • The generalized linear mixed model framework is for handling count-type categorical data as well as for clustered or overdispersed non-Gaussian data, or for non-linear model data. In this study, we review its general formulation and estimation methods, based on quasi-likelihood and Monte-Carlo techniques. The current research areas and topics for further development are also mentioned.

  • PDF

Gamma Mixed Model to Improve Sib-Pair Linkage Analysis (감마 혼합 모형을 통한 반복 측정된 형제 쌍 연관 분석 사례연구)

  • Kim, Jeonghwan;Suh, Young Ju;Won, Sungho;Nah, Jeung Weon;Lee, Woojoo
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.221-230
    • /
    • 2015
  • Traditionally, sib-pair linkage analysis with repeated measures has employed linear mixed models, but it suffers from the lack of power to find genetic marker loci associated with a phenotype of interest. In this paper, we use a gamma mixed model to improve sib-pair linkage analysis and compare it with a linear mixed model in terms of power and Type I error. We illustrate that the use of gamma mixed model can achieve higher power than linear mixed model with Genetic Analysis Workshop 13 data.

The local influence of LIU type estimator in linear mixed model

  • Zhang, Lili;Baek, Jangsun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.2
    • /
    • pp.465-474
    • /
    • 2015
  • In this paper, we study the local influence analysis of LIU type estimator in the linear mixed models. Using the method proposed by Shi (1997), the local influence of LIU type estimator in three disturbance models are investigated respectively. Furthermore, we give the generalized Cook's distance to assess the influence, and illustrate the efficiency of the proposed method by example.

A General Mixed Linear Model with Left-Censored Data

  • Ha, Il-Do
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.969-976
    • /
    • 2008
  • Mixed linear models have been widely used in various correlated data including multivariate survival data. In this paper we extend hierarchical-likelihood(h-likelihood) approach for mixed linear models with right censored data to that for left censored data. We also allow a general random-effect structure and propose the estimation procedure. The proposed method is illustrated using a numerical data set and is also compared with marginal likelihood method.

Improved Algorithm for Case-Deletion Diagnostic in Mixed Linear Models

  • Lee, Jang-Teak
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.677-686
    • /
    • 2000
  • Outliers may occur with respect to any of the random components in mixed linear models. We develop a use of simple, inexpensive updating formulas to consider the effect of case-deletion for mixed linear models. The method described here requires inversions of an n x n matrix, where n is the number of nonempty cells. A numerical example illustrates the use of computational formulas.

  • PDF

Seismic assessment of mixed masonry-reinforced concrete buildings by non-linear static analyses

  • Cattari, S.;Lagomarsino, S.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.241-264
    • /
    • 2013
  • Since the beginning of the twentieth century, the progressive and rapid spread of reinforced concrete (RC) has led to the adoption of mixed masonry-RC solutions, such as the confined masonry. However, together with structures conceived with a definite role for earthquake behaviour, the spreading of RC technology has caused the birth of mixed solutions inspired more by functional aspects than by structural ones, such as: internal masonry walls replaced by RC frames, RC walls inserted to build staircases or raising made from RC frames. Usually, since these interventions rise from a spontaneous build-up, any capacity design or ductility concepts are neglected being designed only to bear vertical loads: thus, the vulnerability assessment of this class becomes crucial. To investigate the non-linear seismic response of these structures, suitable models and effective numerical tools are needed. Among the various modelling approaches proposed in the literature and codes, the authors focus their attention on the equivalent frame model. After a brief description of the adopted model and its numerical validation, the authors aim to point out some specific peculiarities of the seismic response of mixed masonry-RC structures and their repercussions on safety verification procedures (referring in particular way to the non-linear static ones). In particular, the results of non-linear static analyses performed parametrically to various configurations representative of different interventions are discussed.

Estimation of Small Area Proportions Based on Logistic Mixed Model

  • Jeong, Kwang-Mo;Son, Jung-Hyun
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.1
    • /
    • pp.153-161
    • /
    • 2009
  • We consider a logistic model with random effects as the superpopulation for estimating the small area pro-portions. The best linear unbiased predictor under linear mired model is popular in small area estimation. We use this type of estimator under logistic mixed motel for the small area proportions, on which the estimation of mean squared error is also discussed. Two kinds of estimation methods, the parametric bootstrap and the linear approximation will be compared through a Monte Carlo study in the respects of the normality assumption on the random effects distribution and also the magnitude of sample sizes on the approximation.