• Title/Summary/Keyword: Mixed layer

Search Result 1,176, Processing Time 0.028 seconds

Effect of Dewpoints on Annealing Behavior and Coating Characteristics in IF High Strength Steels Containing Si and Mn (Si, Mn함유 IF 고강도강의 소둔거동 및 도금특성에 미치는 이슬점 온도의 영향)

  • Jeon, Sun-Ho;Shin, Kwang-Soo;Sohn, Ho-Sang;Kim, Dai-Ryong
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.427-436
    • /
    • 2008
  • The effect of dewpoints on annealing behavior and coating characteristics such as wettability and galvannealing kinetics was studied by annealing 0.3wt%Si - 0.1~0.4wt% Mn added interstitial-free high strength steels(IF-HSS). The 0.3wt%Si-0.1wt%Mn steel exhibited good wettability with molten zinc and galvannealing kinetics after annealing when the dewpoint of $H_2-N_2$ mixed gas was above $-20^{\circ}C$. It is shown that the wettability and galvannealing kinetics are directly related to the coverage of the external(surface) oxide formed by selective oxidation during annealing. At $N_2-15%H_2$ annealing atmosphere, the increase of dewpoint results in a gradual transition from external to internal selective oxidation. The decrease of external oxidation of alloying elements with a concurrent increase of their subsurface enrichment in the substrate, showing a larger surface area that was free of oxide particles, contributed to the improved wettability and galvannealing kinetics. On the other hand, the corresponding wettability and galvannealing kinetics were deteriorated with the dewpoints below $-20^{\circ}C$. The continuous oxide layer of network and/or film type was formed on the steel surface, leading to the poor wettability and galvannealing kinetics. It causes a high contact angle between annealed surface and molten zinc and plays an interrupting role in interdiffusion of Zn and Fe during galvannealing process.

A novel barium oxide-based Iraqi sand glass to attenuate the low gamma-ray energies: Fabrication, mechanical, and radiation protection capacity evaluation

  • Al-Saeedi, F.H.F.;Sayyed, M.I.;Kapustin, F.L.;Al-Ghamdi, Hanan;Kolobkova, E.V.;Tashlykov, O.L.;Almuqrin, Aljawhara H.;Mahmoud, K.A.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3051-3058
    • /
    • 2022
  • In the present work, untreated Iraqi sand with grain sizes varied between 100 and 200 ㎛ was used to produce a colored glass sample that has shielding features against the low gamma-ray energy. Therefore, a weight of 70-60 wt % sand was mixed with 9-14 wt% B2O3, 8-10 wt% Na2O, 4-6 wt% of CaO, 3-6 wt% Al2O3, in addition to 0.3% of Co2O3. After melting and annealing the glass sample, the X-ray diffraction spectrometry was applied to affirm the amorphous phase of the fabricated glass samples. Moreover, the X-ray dispersive energy spectrometry was used to measure the chemical composition, and the MH-300A densimeter was applied to measure the fabricated sample's density. The Makishima-Makinzie model was applied to predict the mechanical properties of the fabricated glass. Besides, the Monte Carlo simulation was used to estimate the fabricated glass sample's radiation shielding capacity in the low-energy region between 22.1 and 160.6 keV. Therefore, the simulated linear attenuation coefficient changed between 10.725 and 0.484 cm-1, raising the gamma-ray energy between 22.1 and 160.6 keV. Also, other shielding parameters such as a half-value layer, pure lead equivalent thickness, and buildup factors were calculated.

Study of monolithic 3D integrated-circuit consisting of tunneling field-effect transistors (터널링 전계효과 트랜지스터로 구성된 3차원 적층형 집적회로에 대한 연구)

  • Yu, Yun Seop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.682-687
    • /
    • 2022
  • In this paper, the research results on monolithic three-dimensional integrated-circuit (M3DICs) stacked with tunneling field effect transistors (TFETs) are introduced. Unlike metal-oxide-semiconductor field-effect transistors (MOSFETs), TFETs are designed differently from the layout of symmetrical MOSFETs because the source and drain of TFET are asymmetrical. Various monolithic 3D inverter (M3D-INV) structures and layouts are possible due to the asymmetric structure, and among them, a simple inverter structure with the minimum metal layer is proposed. Using the proposed M3D-INV, this M3D logic gates such as NAND and NOR gates by sequentially stacking TFETs are proposed, respectively. The simulation results of voltage transfer characteristics of the proposed M3D logic gates are investigated using mixed-mode simulator of technology computer aided design (TCAD), and the operation of each logic circuit is verified. The cell area for each M3D logic gate is reduced by about 50% compared to one for the two-dimensional planar logic gates.

Filtration Efficiency of Granular Activated Carbons to Polydisperse Ultrafine Particles through the Surface Adsoprtion (그래뉼 타입 활성탄 필터의 100 나노 미만 다분산 초미세먼지 표면흡착 제거 효율 연구)

  • Cho, Kyungil;Kang, Giwon;Shin, Jiyoon;Kim, Changhyuk
    • Particle and aerosol research
    • /
    • v.18 no.3
    • /
    • pp.79-86
    • /
    • 2022
  • Many commercial air purifiers currently have deployed granular activated carbon (GAC) filters for removing volatile organic compounds in the indoor air. GACs are generally used to remove gaseous contaminants in the air through adsorption by the inner surfaces of pores. In addition, airborne particles can be also filtered by the surface adsorption of the GACs, which can improve the life-time of the particulate filters. In this study, the filtration efficiency of GACs to ultrafine particles through surface adsorption was investigated at different volume flow rates by deploying a continuous particle filtration system. The polydisperse sodium chloride (NaCl) particles were generated by a set of an atomizer and a diffusion dryer, and then mixed with particle-free air at different volume flow rates. The penetration of ultrafine particles and pressure drop for each experimental condition were measured to figure out the effect of the volume flow rate on the surface adsoprtion of the GACs to particles, ~ 2 mm. The particle filtration efficiency of the GACs decreased as the volume flow rate increased from 4 to 14 lpm. However, the 5 times thicker GAC filter layer decreased the penetration of ultraparticles than a preious study. The filtration efficiency of the single granule was also higher than the previous result in the literature with smaller granule filter materials.

Experimental Evaluation of Particulate-matter Filtration Performance of a Bottom Ash-Silica Sand Mixture (석탄 저회-규사 필터의 입자상물질 여과 성능 실험적 평가)

  • Lee, Dong-Hyun;Lee, Hong-Kyoung;Lee, Yun-Jae;An, Jaehun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.41-47
    • /
    • 2022
  • Permeable pavement technology allows the penetration of rainfall into the roadbed, thereby reducing surface runoff and enhancing water quality. The water quality can be improved by adding a filter layer to the permeable pavement. This study analyzes the permeability performance and particulate-matter removal efficiency of a bottom ash-silica sand filter. The performances of five filters with bottom ash and silica sand as the basic materials were evaluated on particulate matter sized 60 ㎛ or smaller. The pure silica sand sample and pure bottom ash sample delivered an average removal efficiency of around 70%. The removal efficiency of the mixed sample was approximately 90%, exceeding the recommended reduction rate (80%) at non-point pollution reduction facilities. In future work, the filter performance should be further verified on permeable pavement.

Surface Modification and Bioactivity Improvement of 3Y-TZP Substrate by Spray Coating of Hydroxyapatite/Fosterite Composite Powder (하이드록시아파타이트/포스터라이트 복합분말의 분사코팅에 의한 3Y-TZP 기판의 표면개질과 생체활성 증진)

  • Yu Hyeon Yun;Jong Kook Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.8
    • /
    • pp.337-343
    • /
    • 2023
  • 3Y-TZP (3 mol% yttria-stabilized tetragonal zirconia polycrystals) ceramics have excellent mechanical properties including high fracture toughness, good abrasion resistance as well as chemical and biological stability. As a result, they are widely used in mechanical and medical components such as bearings, grinding balls, and hip implants. In addition, they provide excellent light transmittance, biocompatibility, and can match tooth color when used as a dental implant. Recently, given the materials' resemblance to human teeth, these ceramics have emerged as an alternative to titanium implants. Since the introduction of CAD/CAM in the manufacture of ceramic implants, they've been increasingly used for prosthetic restoration where aesthetics and strength are required. In this study, to improve the surface roughness of zirconia implants, we modified the 3Y-TZP surface with a biocomposite of hydroxyapatite and forsterite using room temperature spray coating methods, and investigated the mixed effect of the two powders on the evolution of surface microstructure, i.e., coating thickness and roughness, and biological interaction during the in vitro test in SBF solution. We compared improvement in bioactivity by observing dissolution and re-precipitation on the specimen surface. From the results of in vitro testing in SBF solution, we confirmed improvement in the bioactivity of the 3Y-TZP substrate after surface modification with a biocomposite of hydroxyapatite and forsterite. Surface dissolution of the coating layer and the precipitation of new hydroxyapatite particles was observed on the modified surface, indicating the improvement in bioactivity of the zirconia substrate.

Optimizing CNN Structure to Improve Accuracy of Artwork Artist Classification

  • Ji-Seon Park;So-Yeon Kim;Yeo-Chan Yoon;Soo Kyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.9-15
    • /
    • 2023
  • Metaverse is a modern new technology that is advancing quickly. The goal of this study is to investigate this technique from the perspective of computer vision as well as general perspective. A thorough analysis of computer vision related Metaverse topics has been done in this study. Its history, method, architecture, benefits, and drawbacks are all covered. The Metaverse's future and the steps that must be taken to adapt to this technology are described. The concepts of Mixed Reality (MR), Augmented Reality (AR), Extended Reality (XR) and Virtual Reality (VR) are briefly discussed. The role of computer vision and its application, advantages and disadvantages and the future research areas are discussed.

Experimental Study on the Residual Soil-Grout Interface-shearing Behavior (풍화토-그라우트 인터페이스 전단 거동 특성에 대한 실험적 연구)

  • Shin, Gyu-Beom ;Chung, Choong-Ki;Kim, Inhyun;Jo, Bum-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.4
    • /
    • pp.19-29
    • /
    • 2023
  • This research proposes a direct shear test method to evaluate the behavior of the soil-grout interface. The proposed test method was employed to conduct direct shear tests on two types of specimens: residual soil and residual soil-grout. The evaluation of the shear stress-slip curve indicated that the residual shear strength of residual soil-grout was similar to that of residual soil. It was further confirmed that residual soil determines the behavior of the critical state of the residual soil-grout interface. However, a remarkable increase in the maximum shear strength at the residual soil-grout interface was observed. The increase rate of the maximum shear strength was higher in loose soil due to the increased thickness of the interface layer where residual soil particles and grout particles are mixed.

Biocompatibility and bioactive potential of the NeoMTA Plus endodontic bioceramic-based sealer

  • Roberto Alameda Hoshino;Mateus Machado Delfino;Guilherme Ferreira da Silva;Juliane Maria Guerreiro-Tanomaru;Mario Tanomaru-Filho;Estela Sasso-Cerri;Paulo Sergio Cerri
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.1
    • /
    • pp.4.1-4.16
    • /
    • 2021
  • Objectives: This study evaluated the biocompatibility and bioactive potential of NeoMTA Plus mixed as a root canal sealer in comparison with MTA Fillapex. Materials and Methods: Polyethylene tubes filled with NeoMTA Plus (n = 20), MTA Fillapex (n = 20), or nothing (control group, CG; n = 20) were inserted into the connective tissue in the dorsal subcutaneous layer of rats. After 7, 15, 30 and 60 days, the specimens were processed for paraffin embedding. The capsule thickness, collagen content, and number of inflammatory cells (ICs) and interleukin-6 (IL-6) immunolabeled cells were measured. von Kossa-positive structures were evaluated and unstained sections were analyzed under polarized light. Two-way analysis of variance was performed, followed by the post hoc Tukey test (p ≤ 0.05). Results: At 7 days, the capsules around NeoMTA Plus and MTA Fillapex had more ICs and IL-6-immunostained cells than the CG. However, at 60 days, there was no significant difference in the IC number between NeoMTA Plus and the CG (p = 0.1137) or the MTA Fillapex group (p = 0.4062), although a greater number of IL-6-immunostained cells was observed in the MTA Fillapex group (p = 0.0353). From 7 to 60 days, the capsule thickness of the NeoMTA Plus and MTA Fillapex specimens significantly decreased, concomitantly with an increase in the collagen content. The capsules around root canal sealers showed positivity to the von Kossa stain and birefringent structures. Conclusions: The NeoMTA Plus root canal sealer is biocompatible and exhibits bioactive potential.

Grain Growth Revealed by Multi-wavelength Analysis of Non-axisymmetric Substructures in the Protostellar Disk WL 17

  • Han, Ilseung;Kwon, Woojin;Aso, Yusuke
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2020
  • Disks around protostars are the birthplace of planets. The first step toward planet formation is grain growth from ㎛-sized grains to mm/cm-sized grains in a disk, particularly in dense regions. In order to study whether grains grow and segregate at the protostellar stage, we investigate the ALMA Band 3 (3.1 mm) and 7 (0.87 mm) dust continuum observations of the protostellar disk WL 17 in ρ Ophiuchus L1688 cloud. As reported in a previous study, the Band 3 image shows substructures: a narrow ring and a large central hole. On the other hand, the Band 7 image shows different substructures: a non-axisymmetric ring and an off-center hole. The two-band observations provide a mean spectral index of 2.3, which suggests the presence of mm/cm-sized large grains. Its non-axisymmetric distribution may imply dust segregation between small and large grains. We perform radiative transfer modeling to examine the size and spatial distributions of dust grains in the WL 17 disk. The best-fit model suggests that large grains (>1 cm) exist in the disk, settling down toward the midplane, whereas small grains (~10 ㎛) well mixed with gas are distributed off-center and non-axisymmetrically in a thick layer. The low spectral index and the modeling results suggest that grains rapidly grow at the protostellar stage and that grains differently distribute depending on sizes, resulting in substructures varying with observed wavelengths. To understand the differential grain distributions and substructures, we discuss the effects of the protoplanet(s) expected inside the large hole and the possibility of gravitational instability.

  • PDF