DOI QR코드

DOI QR Code

A novel barium oxide-based Iraqi sand glass to attenuate the low gamma-ray energies: Fabrication, mechanical, and radiation protection capacity evaluation

  • Al-Saeedi, F.H.F. (Saint-Petersburg State Institute of Technology) ;
  • Sayyed, M.I. (Department of Physics, Faculty of Science, Isra University) ;
  • Kapustin, F.L. (Ural Federal University) ;
  • Al-Ghamdi, Hanan (Department of Physics, College of Science, Princess Nourah bint Abdulrahman University) ;
  • Kolobkova, E.V. (Saint-Petersburg State Institute of Technology) ;
  • Tashlykov, O.L. (Ural Federal University) ;
  • Almuqrin, Aljawhara H. (Department of Physics, College of Science, Princess Nourah bint Abdulrahman University) ;
  • Mahmoud, K.A. (Ural Federal University)
  • Received : 2022.01.24
  • Accepted : 2022.03.12
  • Published : 2022.08.25

Abstract

In the present work, untreated Iraqi sand with grain sizes varied between 100 and 200 ㎛ was used to produce a colored glass sample that has shielding features against the low gamma-ray energy. Therefore, a weight of 70-60 wt % sand was mixed with 9-14 wt% B2O3, 8-10 wt% Na2O, 4-6 wt% of CaO, 3-6 wt% Al2O3, in addition to 0.3% of Co2O3. After melting and annealing the glass sample, the X-ray diffraction spectrometry was applied to affirm the amorphous phase of the fabricated glass samples. Moreover, the X-ray dispersive energy spectrometry was used to measure the chemical composition, and the MH-300A densimeter was applied to measure the fabricated sample's density. The Makishima-Makinzie model was applied to predict the mechanical properties of the fabricated glass. Besides, the Monte Carlo simulation was used to estimate the fabricated glass sample's radiation shielding capacity in the low-energy region between 22.1 and 160.6 keV. Therefore, the simulated linear attenuation coefficient changed between 10.725 and 0.484 cm-1, raising the gamma-ray energy between 22.1 and 160.6 keV. Also, other shielding parameters such as a half-value layer, pure lead equivalent thickness, and buildup factors were calculated.

Keywords

Acknowledgement

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R28), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

References

  1. K.A. Naseer, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, Impact of Bi2O3 modifier concentration on barium-zincborate glasses: physical, structural, elastic, and radiation-shielding properties, The European Physical Journal Plus 136 (2021) 116, https://doi.org/10.1140/epjp/s13360-020-01056-6.
  2. A.S. Abouhaswa, M.I. Sayyed, K.A. Mahmoud, Y. Al-Hadeethi, Direct influence of mercury oxide on structural, optical and radiation shielding properties of a new borate glass system, Ceram. Int. 46 (2020) 17978-17986, https://doi.org/10.1016/j.ceramint.2020.04.112.
  3. R. Divina, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, Physical and structural effect of modifiers on dysprosium ions incorporated boro-tellurite glasses for radiation shielding purposes, Ceram. Int. 46 (2020) 17929-17937, https://doi.org/10.1016/j.ceramint.2020.04.102.
  4. S. Islam, K.A. Mahmoud, M.I. Sayyed, B. Alim, M. Rahman, A.S. Mollah, Study on the radiation attenuation properties of locally available bees-wax as a tissue equivalent bolus material in radiotherapy, Radiat. Phys. Chem. (2019), 108559, https://doi.org/10.1016/j.radphyschem.2019.108559.
  5. N.K. Libeesh, K.A. Naseer, S. Arivazhagan, K.A. Mahmoud, M.I. Sayyed, M.S. Alqahtani, E.S. Yousef, Multispectral remote sensing for determination the Ultra-mafic complexes distribution and their applications in reducing the equivalent dose from the radioactive wastes, The European Physical Journal Plus 137 (2022) 267, https://doi.org/10.1140/epjp/s13360-022-02473-5.
  6. N.K. Libeesh, K.A. Naseer, S. Arivazhagan, A.F. Abd El-Rehim, K.A. Mahmoud, M.I. Sayyed, M.U. Khandaker, Advanced nuclear radiation shielding studies of some mafic and ultramafic complexes with lithological mapping, Radiat. Phys. Chem. 189 (2021), 109777, https://doi.org/10.1016/j.radphyschem.2021.109777.
  7. N.K. Libeesh, K.A. Naseer, S. Arivazhagan, A.F.A. El-Rehim, G. ALMisned, H.O. Tekin, Characterization of Ultramafic-Alkaline-Carbonatite complex for radiation shielding competencies: an experimental and Monte Carlo study with lithological mapping, Ore Geol. Rev. 142 (2022), 104735, https://doi.org/10.1016/j.oregeorev.2022.104735.
  8. N.K. Libeesh, K.A. Naseer, K.A. Mahmoud, M.I. Sayyed, S. Arivazhagan, M.S. Alqahtani, E.S. Yousef, M.U. Khandaker, Applicability of the multispectral remote sensing on determining the natural rock complexes distribution and their evaluability on the radiation protection applications, Radiat. Phys. Chem. 193 (2022), 110004, https://doi.org/10.1016/j.radphyschem.2022.110004.
  9. S. Singh, A. Kumar, D. Singh, K.S. Thind, G.S. Mudahar, Barium-borate-flyash glasses: as radiation shielding materials, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 266 (2008) 140-146, https://doi.org/10.1016/j.nimb.2007.10.018.
  10. M.Y. Hanfi, M.I. Sayyed, E. Lacomme, I. Akkurt, K.A. Mahmoud, The influence of MgO on the radiation protection and mechanical properties of tellurite glasses, Nucl. Eng. Technol. (2020), https://doi.org/10.1016/j.net.2020.12.012.
  11. A. Kumar, A. Jain, M.I. Sayyed, F. Laariedh, K.A. Mahmoud, J. Nebhen, M.U. Khandaker, M.R.I. Faruque, Tailoring bismuth borate glasses by incorporating PbO/GeO2 for protection against nuclear radiation, Sci. Rep. 11 (2021) 1-14, https://doi.org/10.1038/s41598-021-87256-1.
  12. M.H. Kharita, R. Jabra, S. Yousef, T. Samaan, Shielding properties of lead and barium phosphate glasses, Radiat. Phys. Chem. 81 (2012) 1568-1571, https://doi.org/10.1016/j.radphyschem.2012.05.002.
  13. E. Hannachi, K.A. Mahmoud, A.H. Almuqrin, M.I. Sayyed, Y. Slimani, Evaluation of the radiation-protective properties of Bi (Pb)-Sr-Ca-Cu-O ceramic prepared at different temperatures with silver inclusion, Materials 15 (2022) 1034, https://doi.org/10.3390/ma15031034.
  14. E. Hannachi, K.A. Mahmoud, M.I. Sayyed, Y. Slimani, Effect of sintering conditions on the radiation shielding characteristics of YBCO superconducting ceramics, J. Phys. Chem. Solid. 164 (2022), 110627, https://doi.org/10.1016/j.jpcs.2022.110627.
  15. J. Singh, H. Singh, J. Sharma, T. Singh, P.S. Singh, Fusible alloys: a potential candidate for gamma rays shield design, Prog. Nucl. Energy 106 (2018) 387-395, https://doi.org/10.1016/j.pnucene.2018.04.002.
  16. F. Akman, M.R. Kacal, M.I. Sayyed, H.A. Karatas, Study of gamma radiation attenuation properties of some selected ternary alloys, J. Alloys Compd. 782 (2019) 315-322, https://doi.org/10.1016/j.jallcom.2018.12.221.
  17. E. Sakar, M. Buyukyildiz, B. Alim, B.C. Sakar, M. Kurudirek, Leaded brass alloys for gamma-ray shielding applications, Radiat. Phys. Chem. 159 (2019) 64-69, https://doi.org/10.1016/j.radphyschem.2019.02.042.
  18. G. El-Damrawi, K. Abd-El-Nour, R.M. Ramadan, Structural and dielectric studies on Na2O-PbO-SiO2 glasses, Silicon 11 (2019) 495-500, https://doi.org/10.1007/s12633-018-9863-7.
  19. Y. Al-Hadeethi, M.S. Al-Buriahi, M.I. Sayyed, Bioactive glasses and the impact of Si3N4 doping on the photon attenuation up to radiotherapy energies, Ceram. Int. 46 (2020) 5306-5314, https://doi.org/10.1016/j.ceramint.2019.10.281.
  20. B.E. Warren, J. Biscce, The structure OF silica glass BY X-ray diffraction studies, J. Am. Ceram. Soc. 21 (1938) 49-54, https://doi.org/10.1111/j.1151-2916.1938.tb15742.x.
  21. H.W. Nesbitt, G.M. Bancroft, G.S. Henderson, R. Ho, K.N. Dalby, Y. Huang, Z. Yan, Bridging, non-bridging and free (O2-) oxygen in Na2O-SiO2 glasses: an X-ray photoelectron spectroscopic (XPS) and nuclear magnetic resonance (NMR) study, J. Non-Cryst. Solids 357 (2011) 170-180, https://doi.org/10.1016/j.jnoncrysol.2010.09.031.
  22. A. Novatski, A. Steimacher, A.N. Medina, A.C. Bento, M.L. Baesso, L.H.C. Andrade, S.M. Lima, Y. Guyot, G. Boulon, Relations among nonbridging oxygen, optical properties, optical basicity, and color center formation in CaO-MgO aluminosilicate glasses, J. Appl. Phys. 104 (2008), 094910, https://doi.org/10.1063/1.3010306.
  23. G. Calas, L. Galoisy, L. Cormier, G. Ferlat, G. Lelong, The structural properties of cations in nuclear glasses, Procedia Mater. Sci. 7 (2014) 23-31, https://doi.org/10.1016/j.mspro.2014.10.005.
  24. S. Khan, G. Kaur, K. Singh, Effect of ZrO2 on dielectric, optical and structural properties of yttrium calcium borosilicate glasses, Ceram. Int. 43 (2017) 722-727, https://doi.org/10.1016/j.ceramint.2016.09.219.
  25. O.L. Tashlykov, S.G. Vlasova, I.S. Kovyazina, K.A. Mahmoud, Repercussions of yttrium oxides on radiation shielding capacity of sodium-silicate glass system: experimental and Monte Carlo simulation study, The European Physical Journal Plus 136 (2021) 428, https://doi.org/10.1140/epjp/s13360-021-01420-0.
  26. M.H.A. Mhareb, M. Alqahtani, Y.S.M. Alajerami, F. Alshahri, M.I. Sayyed, K.A. Mahmoud, N. Saleh, N. Alonizan, M.S. Al-Buriahi, K.M. Kaky, Ionizing radiation shielding features for titanium borosilicate glass modified with different concentrations of barium oxide, Mater. Chem. Phys. 272 (2021), 125047, https://doi.org/10.1016/j.matchemphys.2021.125047.
  27. A. Makishima, J.D. Mackenzie, Direct calculation of Young's moidulus of glass, J. Non-Cryst. Solids 12 (1973) 35-45, https://doi.org/10.1016/0022-3093(73)90053-7.
  28. A. Makishima, J.D. Mackenzie, Calculation of bulk modulus, shear modulus and Poisson's ratio of glass, J. Non-Cryst. Solids 17 (1975) 147-157, https://doi.org/10.1016/0022-3093(75)90047-2.
  29. A. Mohajerani, V. Martin, D. Boyd, J.W. Zwanziger, On the mechanical properties of lead borate glass, J. Non-Cryst. Solids 381 (2013) 29-34, https://doi.org/10.1016/j.jnoncrysol.2013.09.015.
  30. A. Acikgoz, G. Demircan, D. Yilmaz, B. Aktas, S. Yalcin, N. Yorulmaz, Structural, mechanical, radiation shielding properties and albedo parameters of alumina borate glasses: role of CeO2 and Er2O3, Mater. Sci. Eng. B 276 (2022), 115519, https://doi.org/10.1016/j.mseb.2021.115519.
  31. E. Nabhan, Mechanical and structural properties of zinc - sodium - phosphate glasses doped with Cu2O, Am. J. Phys. Appl. 4 (2016) 145, https://doi.org/10.11648/j.ajpa.20160406.12.
  32. X-5 Monte Carlo Team, MCNP - A General Monte Carlo N-Particle Transport Code, Version 5, La-Ur-03-1987. II, 2003.
  33. K.A. Mahmoud, Y.S. Rammah, Investigation of gamma-ray shielding capability of glasses doped with Y, Gd, Nd, Pr and Dy rare earth using MCNP-5 code, Physica B: Phys. Condens. Matter (2019), 411756, https://doi.org/10.1016/j.physb.2019.411756.
  34. F.I. El-Agawany, O.L. Tashlykov, K.A. Mahmoud, Y.S. Rammah, The radiation-shielding properties of ternary SiO2-SnO-SnF2 glasses: simulation and theoretical study, Ceram. Int. 46 (2020) 23369-23378, https://doi.org/10.1016/j.ceramint.2020.04.042.
  35. Y.S. Rammah, K.A. Mahmoud, E. Kavaz, A. Kumar, F.I. El-Agawany, The role of PbO/Bi2O3 insertion on the shielding characteristics of novel borate glasses, Ceram. Int. 46 (2020) 23357-23368, https://doi.org/10.1016/j.ceramint.2020.04.018.
  36. R. Kurtulus, T. Kavas, K.A. Mahmoud, M.I. Sayyed, A comprehensive examination of zinc-boro-vanadate glass reinforced with Ag2O in physical, optical, mechanical, and radiation shielding aspects, Appl. Phys. Mater. Sci. Process 127 (2021) 1-13, https://doi.org/10.1007/s00339-021-04282-6.
  37. R. Divina, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, Physical and structural effect of modifiers on dysprosium ions incorporated boro-tellurite glasses for radiation shielding purposes, Ceram. Int. 46 (2020) 17929-17937, https://doi.org/10.1016/j.ceramint.2020.04.102.
  38. A.M Abu El-Soad, M.I Sayyed, K.A. Mahmoud, E S, akar, E.G Kovaleva, Simulation studies for gamma ray shielding properties of Halloysite nanotubes using MCNP-5 code, Appl. Radiat. Isot. 154 (2019), 108882, https://doi.org/10.1016/j.apradiso.2019.108882.
  39. Y. Al-Hadeethi, M.I. Sayyed, BaO-Li2O-B2O3 glass systems: potential utilization in gamma radiation protection, Prog. Nucl. Energy 129 (2020), 103511, https://doi.org/10.1016/j.pnucene.2020.103511.
  40. H.A. Saudi, S.U. El-Kameesy, Investigation of modified zinc borate glasses doped with BaO as a nuclear radiation-shielding material, Radiat. Detect. Technol. Methods 2 (2018) 1-7, https://doi.org/10.1007/s41605-018-0075-x.
  41. S. Kaewjaeng, J. Kaewkhao, P. Limsuwan, U. Maghanemi, Effect of BaO on optical, physical and radiation shielding properties of SiO2-B2O3-Al2O3-CaO-Na2O glasses system, Procedia Eng. 32 (2012) 1080-1086, https://doi.org/10.1016/j.proeng.2012.02.058.
  42. M.S.I. Koubisy, KhS. Shaaban, E.A.A. Wahab, M.I. Sayyed, K.A. Mahmoud, Synthesis, structure, mechanical and radiation shielding features of 50SiO2-(48 + X) Na2B4O7-(2 - X) MnO2 glasses, The European Physical Journal Plus 136 (2021) 156, https://doi.org/10.1140/epjp/s13360-021-01125-4.
  43. P.E. Teresa, K.A. Naseer, T. Piotrowski, K. Marimuthu, D.A. Aloraini, A.H. Almuqrin, M.I. Sayyed, Optical properties and radiation shielding studies of europium doped modifier reliant multi former glasses, Optik 247 (2021), 168005, https://doi.org/10.1016/j.ijleo.2021.168005.
  44. K.A. Naseer, G. Sathiyapriya, K. Marimuthu, T. Piotrowski, M.S. Alqahtani, E.S. Yousef, Optical, elastic, and neutron shielding studies of Nb2O5 varied Dy3+ doped barium-borate glasses, Optik 251 (2022), 168436, https://doi.org/10.1016/j.ijleo.2021.168436.
  45. P. Evangelin Teresa, K.A. Naseer, K. Marimuthu, H. Alavian, M.I. Sayyed, Influence of modifiers on the physical, structural, elastic and radiation shielding competence of Dy3+ ions doped Alkali boro-tellurite glasses, Radiat. Phys. Chem. 189 (2021) 109741, https://doi.org/10.1016/j.radphyschem.2021.109741.
  46. E. Sakar, O.F. Ozpolat, B. Alim, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Radiat. Phys. Chem. 166 (2020), https://doi.org/10.1016/j.radphyschem.2019.108496.