• Title/Summary/Keyword: Mixed conduction

Search Result 97, Processing Time 0.029 seconds

Highly Efficient Phosphorescent White Organic Light-Emitting Devices with a Poly(N-vinylcarbazole) Host Layer

  • Kang, Min-Ki;Moon, Dae-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권2호
    • /
    • pp.80-83
    • /
    • 2011
  • We have fabricated phosphorescent white organic light-emitting devices (WOLEDs) with a spin-coated poly(Nvinylcarbazole) [PVK] host layer. Iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,$C^{2'}$]picolinate (FIrpic), tris(2-phenylpyridine)iridium(III) [$Ir(ppy)_3$], and tris(2-phenyl-1-quinoline)iridium(III) [$Ir(phq)_3$], were used as the blue, green, and red guest materials, respectively. The PVK was mixed with FIrpic, $Ir(ppy)_3$, and $Ir(phq)_3$ molecules in a chlorobenzene solution and spin-coated in order to prepare the emission layer; 3-(4-biphenylyl)-4-phenyl-5-(4-tertbutylphenyl)-1,2,4-triazole (TAZ) was used as an electron transport material. The resultant device structure was ITO/PVK:FIrpic:$Ir(ppy)_3:Ir(phq)_3$/TAZ/LiF/Al. The electroluminescence, efficiency, and electrical conduction characteristics of the WOLEDs based on the doped PVK host layer were investigated. The maximum current efficiency of the three wavelength WOLED with the doped PVK host was 19.2 cd/A.

리튬이온전지에서 새로운 양극재료를 위한 금속인산화물 (Lithium Transition Metal Phosphate Cathodes for Advanced Lithium Batteries)

  • 정성윤
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.26-26
    • /
    • 2003
  • Lithium storage electrodes for rechargeable batteries require mixed electronic-ionic conduction at the particle scale in order to deliver desired energy density and power density characteristics at the device level. Recently, lithium transition metal phosphates of olivine and Nasicon structure type have become of great interest as storage cathodes for rechargeable lithium batteries due to their high energy density, low raw materials cost, environmental friendliness, and safety. However, the transport properties of this family of compounds, and especially the electronic conductivity, have not generally been adequate for practical applications. Recent work in the model olivine LiFePO$_4$, showed that control of cation stoichiometry and aliovalent doping results in electronic conductivity exceeding 10$^{-2}$ S/cm, in contrast to ~10$^{-9}$ S/cm for high purity undoped LiFePO$_4$. The increase in conductivity combined with particle size refinement upon doping allows current rates of >6 A/g to be utilized while retaining a majority of the ion storage capacity. These properties are of much practical interest for high power applications such as hybrid electric vehicles. The defect mechanism controlling electronic conductivity, and understanding of the microscopic mechanism of lithiation and delithiation obtained from combined electrochemical and microanalytical techniques, will be discussed

  • PDF

에폭시 복합체의 TSC특성파 구조변화사이의 상관성 연구 (A Study on The Relationship between TSC Properties and Structural Changes of Epoxy Composites Materials)

  • 왕종배;박준범;박경원;신철기;이준웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1993년도 추계학술대회 논문집
    • /
    • pp.75-79
    • /
    • 1993
  • The Thermally Stimulated Current(TSC) method has been allied to study the influence of the structural change and interface on the electrical properties of epoxy composites. Three DGBA- MeTHPA matrix model samples mixed different ratios arts silica(SiO$_2$) filled sample and silaln treating-filled sample have been studied. Above room temperature, the relaxation mode ${\alpha}$ peak associated with T$\_$g/ has been located at 110$^{\circ}C$. Below glass transition temperature(T$\_$g/), three relaxation modes are observed in all samples : a ${\beta}$ mode situated at 10$^{\circ}C$, a ${\gamma}$ mode located at -40$^{\circ}C$ and a $\delta$mode appeared in -120$^{\circ}C$, which may be due to segmental motion, side chains, substitution and terminal groups. The analysis of its fine structure indicates that constitution of elementary processes is characterized by the activation energy and relaxation time. Also the change of the molecular structure and their thermal motion are compared with the relaxation mode and conduction mechanism in TSC spectra through the dielectric properties and FTIR measurements.

  • PDF

Photodecomposition of Different Organic Dyes Using Fe-CNT/TiO2 Composites under UV and Visible Light

  • Zhang, Kan;Meng, Ze-Da;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제47권2호
    • /
    • pp.169-176
    • /
    • 2010
  • The Fe-treated CNT/$TiO_2$ photocatalysts mixed with anatase and rutile phase have been developed for the decomposition of non-biodegradable different organic dyes like methylene blue (MB), rhodamine B (Rh.B), and methyl orange (MO) in two conditions as ultraviolet and visible light respectively. The results indicate that all the Fe-CNT/$TiO_2$ composites proved to be more efficient photocatalysts since degradation of MB at higher reaction rates, tthe decomposition rate of different dyes increases with an increase of $Fe^{3+}$ concentration in composites the highest rate of decomposition of different dyes was noted under UV irradiation. These results can indicate that the large CNT network is facilitate the electron transfer and strongly adsorb dye molecules on the texted photocatalysts, iron is reactive in the photo-Fenton process resulting in high production of OH radicals and also high activity of the photocatalyst. And Fe particles can generate more photoinduced electrons to conduction band of $TiO_2$ under visible light irradiation. The composites of Fe-CNT/$TiO_2$ photocatalysts synthesized by a sol-gel method were characterized by BET, TEM, SEM, XRD and EDX.

LIF 및 CLSM을 결합한 미소 간극 내 유체의 단면 온도 분포 측정 기법 (Measurement of Cross-sectional Temperature Distribution in Micro-scale Gap Fluid Using LIF Technique in Combination with CLSM)

  • 정동운;이상용
    • 대한기계학회논문집B
    • /
    • 제30권9호
    • /
    • pp.834-841
    • /
    • 2006
  • In the present wort the Laser-induced Fluorescence (LIF) technique and Confocal Laser Scanning Microscopy (CLSM) have been combined to measure the temperature distribution across a micro-scale liquid layer as a direct and non-invasive method. Only the fluorescent light emitted from a very thin volume around a focal plane can be selectively detected, and it enables us to measure the liquid temperatures even at the close vicinity of the walls. As an experimental verification, a test section consists of two flat plates (for heating and cooling, respectively) separated by about 240 microns was made, and the methanol mixed with a temperature-sensitive dye, Rhodamine B, was filled in the gap between them. The measured temperature distribution across the gap showed good linearity, which is a typical characteristic of conduction heat transfer through a thin liquid layer. In result, the CLSM-LIF technique proposed in the present study was found to be a promising method to measure the local temperatures in the liquid flow field in microfluidic devices.

플라즈마 영상장치의 채널 사이에 놓인 전자모듈의 자연대류 열전달 해석 (Analysis of Natural Convection Heat Transfer from Electronic Modules in a Plasma Display Panel)

  • 최인수;박병덕;서주환
    • 한국산업융합학회 논문집
    • /
    • 제7권1호
    • /
    • pp.25-31
    • /
    • 2004
  • The heat transfer characteristics of a plasma display panel has been investigated for cooling an electronic module. Hence, a two dimensional $\kappa-{\varepsilon}$ turbulent model was developed to predict the temperatures of the panel and module. The heat conduction was solve for the material region. To consider the mixed convection at the solid-fluid interfaces between the air and the panel and module, the energy equation was solved simultaneously. When the electronic module stands face to face with the panel, the temperatures of panel and module are lower than other arrangement due to the chimney effect. However the gap between the panel and module does not affect significantly the maximum temperature when the aspect ratio is less than 0.1. To maintain the maximum temperature of the module under a certain limit, the passage of air should be well designed by the optimal layout of electronic modules which have different heat emission.

  • PDF

리튬 폴리머전지용 PVDF/PAN계 고분자 전해질의 이온 전도 특성 (Ion Conduction Properties of PVDF/PAN based Polymer Electrolyte for Lithium Polymer Battery)

  • 이재안;김종욱;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제13권4호
    • /
    • pp.306-311
    • /
    • 2000
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li polymer battery. The temperature dependence of conductivity impedance spectroscopy and electrochemical properties of PDF/PAN electrolytes as a function of a mixed ratio were reported for PVDF/PAN based polymer electrolyte films which were prepared by thermal gellification method of preweighed PVDF/PAN plasticizer and Li salt. The conductivity of PVDF/PAN electrolytes was 10$\^$-3/S/cm. 20PVDF5PEN LiCiO$\_$4//PC$\_$10//EC$\_$10/ electrolyte has the better conductivity compared to others. 20PVDF5PANLICIO$\_$4//PC$\_$10//EC$\_$10/ electroylte remains stable up to 5V vs. Li/Li$\^$+/. Steady state current method and ac impedance were used for the determination of transference numbers in PVDF/PAN electrolyte film. The transference number of 20PVDF5PANLiCO$\^$4//PC$\_$10//EC$\_$10/ electrolyte is 0.48.

  • PDF

저온 형성 가능한 "졸겔 ZnO / 은 나노선" 복합 투명전도막 (Low Temperature Processed Transparent Conductive Thin Films Based on Sol-Gel ZnO / Ag Nanowire)

  • 신원중;김보석;문찬수;조원기;백승재
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.110-114
    • /
    • 2014
  • We propose a low temperature sol-gel ZnO/Ag nanowire composite thin film to fulfill low temperature and low cost requirements, which are essential criteria in future flexible electronic devices. In this proposed thin film, Ag nanowire plays the role of electrical conduction, and sol-gel ZnO provides a structural medium with a high visible transmittance. Low temperature restriction in the sol-gel fabrication process prevents sufficient oxidation of Zn acetate precursors, which were solved by a post-coating treatment with ultraviolet light irradiation. Composite thin film formation was performed by spin coating methods with a mixed precursor solution or in a sequential manner. We obtained an average visible transmittance larger than 85% and a sheet resistance smaller than $50{\Omega}/sq$. After optimization in a fabricated composite transparent conductive thin film with the thickness around 100 nm. Similar experimental demonstration in a flexible substrate (polyethyleneterephthalate) was successful, which implies a promising application opportunity of this technology.

$SrCe_{0.95}Yb_{0.05}O_3$의 결함엄개와 전기전도 특성 (Defect Structure and Electrical Conductivities of $SrCe_{0.95}Yb_{0.05}O_3$)

  • 최정식;이도권;유한일
    • 한국세라믹학회지
    • /
    • 제37권3호
    • /
    • pp.271-279
    • /
    • 2000
  • 5 m/o Yb-doped SrCeO3 proton conductor was prepared by a solid state reaction method and its total electriccal conductivity measured as a function of both oxygen partial pressure and water vapor partial pressure in the temperature range of 500~100$0^{\circ}C$. From the total conductivity have been deconvoluted the partial conductivities of oxide ions, protons, and holes, respectively, on the basis of the defect model proposed. The equilibrium constant of hydrogen-dissolution reaction, proton concentration, and mobilities of oxygen vacancies and protons have subsequently been evaluated. It is verified that SrCe1-xYbxO3 is a mixed conductor of holes, protons and oxide ions and the proton conduction prevails as temperature decreases and water vapor pressure increases. The heat of water dissolution takes a representative value of $\Delta$HoH=-(140$\pm$20) kJ/mol-H2O, but tends to be less negative with increasing temperature. Migration enthalpies of proton and oxygen vacancy are extracted as 0.83$\pm$0.10 eV and 0.81$\pm$0.01 eV, respectively.

  • PDF

리튬 폴리머전지용 PMMA/PVDF계 고분자 전해질의 이온 전도 특성 (Ion Conduction Properties of PMMA/PVDF based Polymer Electrolyte for Lithium Polymer Battery)

  • 이재안;김종욱;구할본;이헌수;손명모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.347-350
    • /
    • 2000
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li polymer battery. The temperature dependence of conductivity, impedance spectroscopy and electrochemical properties of PMMA/PVDF electrolytes as a function of a mixed ratio were reported for PMMA/PVDF based polymer electrolyte films, which were prepared by thermal gellification method of preweighed PMMA/PVDF, plasticizer and Li salt. The ion conductivity of PMMA/PVDF electrolytes was 10$\^$-3/S/cm, which may be applicable to a constituent of lithium secondary battery. 5PMMA20PVDFLiC1O$_4$PC$\sub$8/EC$\sub$8/ electrolyte remains stable up to 5V vs. Li/Li$\^$+/. Steady state current method and AC impedance were used for the determination of transference numbers in PMMA/PVDF electrolyte film. The transference number of 5PMMA20PVDFLiC1O$_4$PC$\sub$8/EC$\sub$8/ electrolyte is 0.55.

  • PDF