• Title/Summary/Keyword: Mixed Variational Theorem

Search Result 25, Processing Time 0.022 seconds

3D buckling analysis of FGM sandwich plates under bi-axial compressive loads

  • Wu, Chih-Ping;Liu, Wei-Lun
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.111-135
    • /
    • 2014
  • Based on the Reissner mixed variational theorem (RMVT), finite rectangular layer methods (FRLMs) are developed for the three-dimensional (3D) linear buckling analysis of simply-supported, fiber-reinforced composite material (FRCM) and functionally graded material (FGM) sandwich plates subjected to bi-axial compressive loads. In this work, the material properties of the FGM layers are assumed to obey the power-law distributions of the volume fractions of the constituents through the thickness, and the plate is divided into a number of finite rectangular layers, in which the trigonometric functions and Lagrange polynomials are used to interpolate the in- and out-of-plane variations of the field variables of each individual layer, respectively, and an h-refinement process is adopted to yield the convergent solutions. The accuracy and convergence of the RMVT-based FRLMs with various orders used for expansions of each field variables through the thickness are assessed by comparing their solutions with the exact 3D and accurate two-dimensional ones available in the literature.

MULTIPLE SOLUTIONS RESULT FOR THE MIXED TYPE NONLINEAR ELLIPTIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.19 no.4
    • /
    • pp.423-436
    • /
    • 2011
  • We obtain a theorem that shows the existence of multiple solutions for the mixed type nonlinear elliptic equation with Dirichlet boundary condition. Here the nonlinear part contain the jumping nonlinearity and the subcritical growth nonlinearity. We first show the existence of a positive solution and next find the second nontrivial solution by applying the variational method and the mountain pass method in the critical point theory. By investigating that the functional I satisfies the mountain pass geometry we show the existence of at least two nontrivial solutions for the equation.

Quasi-3D static analysis of two-directional functionally graded circular plates

  • Wu, Chih-Ping;Yu, Lu-Ting
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.789-801
    • /
    • 2018
  • A weak-form formulation of finite annular prism methods (FAPM) based on Reissner's mixed variational theorem (RMVT), is developed for the quasi three-dimensional (3D) static analysis of two-directional functionally graded (FG) circular plates with various boundary conditions and under mechanical loads. The material properties of the circular plate are assumed to obey either a two-directional power-law distribution of the volume fractions of the constituents through the radial-thickness surface or an exponential function distribution varying doubly exponentially through it. These FAPM solutions of the loaded FG circular plates with both simply-supported and clamped edges are in excellent agreement with the solutions obtained using the 3D analytical approach and two-dimensional advanced plate theories available in the literature.

A semi-analytical FE method for the 3D bending analysis of nonhomogeneous orthotropic toroidal shells

  • Wu, Chih-Ping;Li, En
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.291-306
    • /
    • 2021
  • Based on Reissner's mixed variational theorem (RMVT), the authors develop a semi-analytical finite element (FE) method for a three-dimensional (3D) bending analysis of nonhomogeneous orthotropic, complete and incomplete toroidal shells subjected to uniformly-distributed loads. In this formulation, the toroidal shell is divided into several finite annular prisms (FAPs) with quadrilateral cross-sections, where trigonometric functions and serendipity polynomials are used to interpolate the circumferential direction and meridian-radial surface variations in the primary field variables of each individual prism, respectively. The material properties of the toroidal shell are considered to be nonhomogeneous orthotropic over the meridianradial surface, such that homogeneous isotropic toroidal shells, laminated cross-ply toroidal shells, and single- and bi-directional functionally graded toroidal shells can be included as special cases in this work. Implementation of the current FAP methods shows that their solutions converge rapidly, and the convergent FAP solutions closely agree with the 3D elasticity solutions available in the literature.

Efficient Thermal Stress Analysis of Laminated Composite Plates using Enhanced First-order Shear Deformation Theory (일차전단변형이론을 이용한 복합재료 적층평판의 효율적 열응력 해석)

  • Han, Jang-Woo;Kim, Jun-Sik;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.505-512
    • /
    • 2012
  • In this paper, an efficient yet accurate method for the thermal stress analysis using a first order shear deformation theory(FSDT) is presented. The main objective herein is to systematically modify transverse shear strain energy through the mixed variational theorem(MVT). In the mixed formulation, independent transverse shear stresses are taken from the efficient higher-order zigzag plate theory, and the in-plane displacements are assumed to be those of the FSDT. Moreover, a smooth parabolic distribution through the thickness is assumed in the transverse normal displacement field in order to consider a transverse normal deformation. The resulting strain energy expression is referred to as an enhanced first order shear deformation theory, which is obtained via the mixed variational theorem with transverse normal deformation effect(EFSDTM_TN). The EFSDTM_TN has the same computational advantage as the FSDT_TN(FSDT with transverse normal deformation effect) does, which allows us to improve the through-the-thickness distributions of displacements and stresses via the recovery procedure. The thermal stresses obtained by the present theory are compared with those of the FSDT_TN and three-dimensional elasticity.

MOUNTAIN PASS GEOMETRY APPLIED TO THE NONLINEAR MIXED TYPE ELLIPTIC PROBLEM

  • Jung Tacksun;Choi Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.419-428
    • /
    • 2009
  • We show the existence of at least one nontrivial solution of the homogeneous mixed type nonlinear elliptic problem. Here mixed type nonlinearity means that the nonlinear part contain the jumping nonlinearity and the critical growth nonlinearity. We first investigate the sub-level sets of the corresponding functional in the Soboles space and the linking inequalities of the functional on the sub-level sets. We next investigate that the functional I satisfies the mountain pass geometry in the critical point theory. We obtain the result by the mountain pass method, the critical point theory and variational method.

  • PDF

SETVALUED MIXED QUASI-EQUILIBRIUM PROBLEMS WITH OPERATOR SOLUTIONS

  • Ram, Tirth;Khanna, Anu Kumari;Kour, Ravdeep
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.83-97
    • /
    • 2022
  • In this paper, we introduce and study generalized mixed operator quasi-equilibrium problems(GMQOEP) in Hausdorff topological vector spaces and prove the existence results for the solution of (GMQOEP) in compact and noncompact settings by employing 1-person game theorems. Moreover, using coercive condition, hemicontinuity of the functions and KKM theorem, we prove new results on the existence of solution for the particular case of (GMQOEP), that is, generalized mixed operator equilibrium problem (GMOEP).

Nonlinear vibration analysis of an embedded multi-walled carbon nanotube

  • Wu, Chih-Ping;Chen, Yan-Hong;Hong, Zong-Li;Lin, Chia-Hao
    • Advances in nano research
    • /
    • v.6 no.2
    • /
    • pp.163-182
    • /
    • 2018
  • Based on the Reissner mixed variational theorem (RMVT), the authors present a nonlocal Timoshenko beam theory (TBT) for the nonlinear free vibration analysis of multi-walled carbon nanotubes (MWCNT) embedded in an elastic medium. In this formulation, four different edge conditions of the embedded MWCNT are considered, two different models with regard to the van der Waals interaction between each pair of walls constituting the MWCNT are considered, and the interaction between the MWCNT and its surrounding medium is simulated using the Pasternak-type foundation. The motion equations of an individual wall and the associated boundary conditions are derived using Hamilton's principle, in which the von $K{\acute{a}}rm{\acute{a}}n$ geometrical nonlinearity is considered. Eringen's nonlocal elasticity theory is used to account for the effects of the small length scale. Variations of the lowest frequency parameters with the maximum modal deflection of the embedded MWCNT are obtained using the differential quadrature method in conjunction with a direct iterative approach.

Enhanced First-Order Shear Deformation Theory for Thermo-Mechanical-Viscoelastic Analysis of Laminated Composite Structures (복합재료 적층 구조물에 대한 열-기계-점탄성 연성 거동 예측을 위한 개선된 일차전단변형이론)

  • Kim, Jun-Sik;Han, Jang-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.53-59
    • /
    • 2022
  • In this study, an enhanced first-order shear deformation theory is proposed to efficiently and accurately predict the thermo-mechanical-viscoelastic coupled behavior of laminated composite structures. To this end, transverse shearstress and displacement fields are independently assumed, and the strain-energy relationship between these fields issystematically established using the mixed variational theorem (MVT). In MVT, the transverse shear stress fields are obtained from the third-order zigzag model, whereas the displacement fields of the conventional first-order model are considered to amplify the benefits of numerical efficiency. Additionally, a transverse displacement field with a smooth parabolic distribution is introduced to accurately predict the thermal behavior of composite structures. Furthermore, the concept of Laplace transformation is newly employed to simplify the viscoelastic problem, similar to the linear-elastic problem. To demonstrate the performance of the proposed theory, the numerical results obtained herein were compared with those available in the literature.

On the Improvement of the Accuracy of Higher Order Derivatives in the MLS(Moving Least Square) Difference Method via Mixed Formulation (MLS 차분법의 결정 변수에 따른 정확도 분석 및 혼합변분이론을 통한 미분근사 성능향상)

  • Kim, Hyun-Young;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.279-286
    • /
    • 2020
  • In this study, we investigate the accuracy of higher order derivatives in the moving least square (MLS) difference method. An interpolation function is constructed by employing a Taylor series expansion via MLS approximation. The function is then applied to the mixed variational theorem in which the displacement and stress resultants are treated as independent variables. The higher order derivatives are evaluated by solving simply supported beams and cantilevers. The results are compared with the analytical solutions in terms of the order of polynomials, support size of the weighting function, and number of nodes. The accuracy of the higher order derivatives improves with the employment of the mean value theorem, especially for very high-order derivatives (e.g., above fourth-order derivatives), which are important in a classical asymptotic analysis.