• Title/Summary/Keyword: Mixed Mode Loading

Search Result 144, Processing Time 0.02 seconds

Determination of Energy Release Rate of Penny-shaped Interface Crack on Bimaterial Cylinder (동전모양 균열이 존재하는 이상복합체의 에너지해방율 산정)

  • 양성철;서영찬;박종원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.389-398
    • /
    • 2002
  • The mixed mode problem (I and II) of a peny-shaped interface cracks in remote tension loading on a bi-material cylinder is studied using finite element method. The energy release rates for the tip of the crack in the interface were calibrated for several different moduli combinations and crack ratios using the modified crack closure integral technique and J-integral method, with numerical results obtained from a commercial finite element program. Numerical results show that non-dimensional value of$\sqrt{G_{II}E^*}/\sqrt[p]{\pi a}$ increases as the crack size or moduli ratio increases. Meanwhile, non-dimensional value of$\sqrt{G_{I}E^*}/\sqrt[p]{\pi a}$ decreases as the moduli ratio increases, but above the moduli ratio of 3 its value decreases then increases again as the crack size increases. Reliability of the numerical analysis in this study was acquired with comparison to an analytical solution for the peny-shaped interface crack in an infinite medium.

Flexural performance of composite sandwich wall panels with foamed concrete

  • Lei Li;Wei Huang;Zhengyi Kong;Li Zhang;Youde Wang;Quang-Viet Vu
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.391-403
    • /
    • 2024
  • The flexural behavior of composite sandwich wall panels with different thicknesses, numbers of holes, and hole forms, and arrangement form of longitudinal steel bar (uniform type and concealed-beam type) are investigated. A total of twelve composite sandwich wall panels are prepared, utilizing modified polystyrene particles mixed with foam concrete for the flexural performance test. The failure pattern of the composite sandwich wall panels is influenced by the extruded polystyrene panel (XPS) panel thickness and the reinforcement ratio in combination, resulting in both flexural and shear failure modes. Increasing the XPS panel thickness causes the specimens to transition from flexural failure to shear failure. An increase in the reinforcement ratio leads to the transition from flexural failure to shear failure. The hole form on the XPS panel and the steel bar arrangement form affect the loading behavior of the specimens. Plum-arrangement hole form specimens exhibit lower steel bar strain and deflection compared to linear-arrangement hole form specimens. Additionally, specimens with concealed beam-type steel bar display lower steel bar strain and deflection than uniform-type steel bar specimens. However, the hole form and steel bar arrangement form have a limited impact on the ultimate load. Theoretical formulas for cracking load are provided for both fully composite and non-composite states. When compared to the experimental values, it is observed that the cracking load of the specimens with XPS panels closely matches the calculations for the non-composite state. An accurate prediction model for the ultimate load of fully composite wall panels is developed. These findings offer valuable insights into the behavior of composite sandwich wall panels and provide a basis for predicting their performance under various design factors and conditions.

Evaluation of Flexural Performance of Eco-Friendly Alkali-Activated Slag Fiber Reinforced Concrete Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 알카리활성 슬래그 섬유보강콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.170-178
    • /
    • 2015
  • In this study, it was developed eco-friendly alkali-activated slag fiber reinforced concrete using ground granulated blast furnace slag, alkali activator (water glass, sodium hydroxides), and steel fiber. Eight reinforced concrete beam using alkali-activated slag concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, mixed/without of steel fiber. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The reinforced concrete beams using the eco-friendly alkali-activated slag fiber reinforced concrete was failed by the flexure or flexure-shear in general. In addition, the maximum strength increased with the adding the mol of sodium hydroxide, and the specimen reinforced the steel fiber showed the value of maximum strength which is increased by 15.8% through 25.9%. It is thought that eco-friendly alkali-activated slag fiber reinforced concrete can be used with construction material and product to replace normal concrete. If there is applied to structures such as precast concrete member and production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.

Study about shear bond strength of zirconia core used in dental prosthesis (치과 보철물에 사용되는 지르코니아 코어의 전단결합강도에 관한 연구)

  • Sim, Ji-Young;Kim, Jae-Hong;Kim, Woong-Chul;Kim, Hae-Young;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.299-306
    • /
    • 2011
  • Purpose: This study aimed to investigate the shear bond strength by manufacturing the veneering porcelain on the IPS e.max $ZirCAD^{(R)}$ zirconia core, using the layering technique and heat-pressing technique, and to evaluate the clinical stability by comparing to the conventional metal ceramic system. Methods: The Schmitz-Schulmeyer test method was used to evaluate the core-veneer shear bond strength of zirconia core ceramic(IPS e.max $ZirCAD^{(R)}$) and their manufacture recommended two veneering ceramic systems(IPS e.max $ceram^{(R)}$, IPS e. max $ZirPress^{(R)}$). A metal ceramic system(Bellabond $plus^{(R)}$, VITA $VM13^{(R)}$) was used as a control group for the two all ceramic system test groups. The maximum loading and shear bond strength was measured. The average shear strength(MPa) was analyzed with the one-way ANOVA and the Tukey's test(${\alpha}$=.05). The fracture specimens were examined using Microscope to determine the failure pattern. Results: The mean shear bond strengths(SD) in MPa were MBSB control 43.62(2.13); ZBSB 18.65(1.76); ZPSB 18.89(1.54). The shear strengths of the zirconia cores were not significantly different(P>.05). Microscope examination showed that zirconia specimens presented mixed failure, and base metal alloy specimens showed adhesive failure. Conclusion: There was no siginificant different between the layering technique and the heat pressing technique in the veneering methods on the zirconia cores. None of the zirconia core and veneering ceramics could attain the high bond strength values of the metal ceramic combination.