• Title/Summary/Keyword: Mixed Integer Programming Model

Search Result 231, Processing Time 0.019 seconds

A Multi-Objective Differential Evolution for Just-In-Time Door Assignment and Truck Scheduling in Multi-door Cross Docking Problems

  • Wisittipanich, Warisa;Hengmeechai, Piya
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.3
    • /
    • pp.299-311
    • /
    • 2015
  • Nowadays, the distribution centres aim to reduce costs by reducing inventory and timely shipment. Cross docking is a logistics strategy in which products delivered to a distribution centre by inbound trucks are directly unloaded and transferred to outbound trucks with minimum warehouse storage. Moreover, on-time delivery in a distribution network becomes very crucial especially when several distribution centres and customers are involved. Therefore, an efficient truck scheduling is needed to synchronize the delivery throughout the network in order to satisfy all stake-holders. This paper presents a mathematical model of a mixed integer programming for door assignment and truck scheduling in a multiple inbound and outbound doors cross docking problem according to Just-In-Time concept. The objective is to find the schedule of transhipment operations to simultaneously minimize the total earliness and total tardiness of trucks. Then, a multi-objective differential evolution (MODE) is proposed with an encoding scheme and four decoding strategies, called ITSH, ITDD, OTSH and OTDD, to find a Pareto frontier for the multi-door cross docking problems. The performances of MODE are evaluated using 15 generated instances. The numerical experiments demonstrate that the proposed algorithm is capable of finding a set of diverse and high quality non-dominated solutions.

Common Due-Date Assignment and Scheduling on Parallel Machines with Sequence-Dependent Setup Times

  • Kim, Jun-Gyu;Yu, Jae-Min;Lee, Dong-Ho
    • Management Science and Financial Engineering
    • /
    • v.19 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • This paper considers common due-date assignment and scheduling on parallel machines. The main decisions are: (a) deter-mining the common due-date; (b) allocating jobs to machines; and (c) sequencing the jobs assigned to each machine. The objective is to minimize the sum of the penalties associated with common due-date assignment, earliness and tardiness. As an extension of the existing studies on the problem, we consider sequence-dependent setup times that depend on the type of job just completed and on the job to be processed. The sequence-dependent setups, commonly found in various manufacturing systems, make the problem much more complicated. To represent the problem more clearly, a mixed integer programming model is suggested, and due to the complexity of the problem, two heuristics, one with individual sequence-dependent setup times and the other with aggregated sequence-dependent setup times, are suggested after analyzing the characteristics of the problem. Computational experiments were done on a number of test instances and the results are reported.

Development of Genetic Algorithm for Production and Distribution Management in Multiple Supplier Network Environment of Robot Engineering Industry (로봇 산업의 다중 공급망 환경을 고려한 생산 및 분배 관리를 위한 유전 알고리듬 개발)

  • Jo, Sung-Min;Kim, Tai-Young;Hwang, Seung-June
    • Journal of Information Technology Applications and Management
    • /
    • v.20 no.2
    • /
    • pp.147-160
    • /
    • 2013
  • Today, the management environments of intelligence firm are changing the way of production planning and logistics management, and are changing the process of supply chain management system. This paper shows the development of information system software for intelligence enterprises is used in supply chain management for robot engineering industry. Specifically, supply chain management system in this paper has been developed to analyze the impact of multi plant and multi distribution environment, showing the process analysis and system development of hierarchical assembly manufacturing industry. In this paper we consider a production planning and distribution management system of intelligence firm in the supply chain. We focus on a capacitated production resource and distribution volume allocation problem, develop a mixed integer programming model, and propose an efficient heuristic procedure using a genetic algorithm to solve it efficiently. This method makes it possible for the population to reach the feasible approximate solution easily. The proposed regeneration procedures, which evaluate each infeasible chromosome, makes the solution converge to the feasible approximate solution quickly.

A Location-Routing Problem for Logistics Network Integrating Forward and Reverse Flow (역물류를 고려한 통합물류망에서의 입지:경로문제)

  • Na, Ho-Young;Lee, Sang-Heon
    • IE interfaces
    • /
    • v.22 no.2
    • /
    • pp.153-164
    • /
    • 2009
  • An effective management for reverse flows of products such as reuse, repair and disposal, has become an important issue for every aspect of business. In this paper, we study the Location-Routing Problem (LRP) in the multi-stage closed-loop supply chain network. The closed-loop supply chain in this study integrated both forward and reverse flows. In forward flow, a factory, Distribution Center (DC) and retailer are considered as usual. Additionally in reverse flow, we consider the Central Returns collection Center (CRC) and disposal facility. We propose a mixed integer programming model for the design of closed-loop supply chain integrating both forward and reverse flows. Since the LRP belongs to an NP-hard problem, we suggest a heuristic algorithm based on genetic algorithm. For some test problems, we found the optimal locations and routes by changing the numbers of retailers and facility candidates. Furthermore, we compare the efficiencies between open-loop and closed-loop supply chain networks. The results show that the closed-loop design is better than the open one in respect to the total routing distance and cost. This phenomenon enlarges the cut down effect on cost as an experimental space become larger.

Effect of Continuity Rate on Multistage Logistic Network Optimization under Disruption Risk

  • Rusman, Muhammad;Shimizu, Yoshiaki
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.2
    • /
    • pp.74-84
    • /
    • 2013
  • Modern companies have been facing devastating impacts from unexpected events such as demand uncertainties, natural disasters, and terrorist attacks due to the increasing global supply chain complexity. This paper proposes a multi stage logistic network model under disruption risk. To formulate the problem practically, we consider the effect of continuity rate, which is defined as a percentage of ability of the facility to provide backup allocation to customers in the abnormal situation and affect the investments and operational costs. Then we vary the fixed charge for opening facilities and the operational cost according to the continuity rate. The operational level of the company decreases below the normal condition when disruption occurs. The backup source after the disrup-tion is recovered not only as soon as possible, but also as much as possible. This is a concept of the business continuity plan to reduce the recovery time objective such a continuity rate will affect the investments and op-erational costs. Through numerical experiments, we have shown the proposed idea is capable of designing a resilient logistic network available for business continuity management/plan.

A Heuristic for Drone-Utilized Blood Inventory and Delivery Planning (드론 활용 혈액 재고/배송계획 휴리스틱)

  • Jang, Jin-Myeong;Kim, Hwa-Joong;Son, Dong-Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.106-116
    • /
    • 2021
  • This paper considers a joint problem for blood inventory planning at hospitals and blood delivery planning from blood centers to hospitals, in order to alleviate the blood service imbalance between big and small hospitals being occurred in practice. The joint problem is to determine delivery timing, delivery quantity, delivery means such as medical drones and legacy blood vehicles, and inventory level to minimize inventory and delivery costs while satisfying hospitals' blood demand over a planning horizon. This problem is formulated as a mixed integer programming model by considering practical constraints such as blood lifespan and drone specification. To solve the problem, this paper employs a Lagrangian relaxation technique and suggests a time efficient Lagrangian heuristic algorithm. The performance of the suggested heuristic is evaluated by conducting computational experiments on randomly-generated problem instances, which are generated by mimicking the real data of Korean Red Cross in Seoul and other reliable sources. The results of computational experiments show that the suggested heuristic obtains near-optimal solutions in a shorter amount of time. In addition, we discuss the effect of changes in the length of blood lifespan, the number of planning periods, the number of hospitals, and drone specifications on the performance of the suggested Lagrangian heuristic.

Applications of Fuzzy Theory on The Location Decision of Logistics Facilities (퍼지이론을 이용한 물류단지 입지 및 규모결정에 관한 연구)

  • 이승재;정창무;이헌주
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.1
    • /
    • pp.75-85
    • /
    • 2000
  • In existing models in optimization, the crisp data improve has been used in the objective or constraints to derive the optimal solution, Besides, the subjective environments are eliminated because the complex and uncertain circumstances were regarded as Probable ambiguity, In other words those optimal solutions in the existing models could be the complete satisfactory solutions to the objective functions in the Process of application for industrial engineering methods to minimize risks of decision-making. As a result of those, decision-makers in location Problems couldn't face appropriately with the variation of demand as well as other variables and couldn't Provide the chance of wide selection because of the insufficient information. So under the circumstance. it has been to develop the model for the location and size decision problems of logistics facility in the use of the fuzzy theory in the intention of making the most reasonable decision in the Point of subjective view under ambiguous circumstances, in the foundation of the existing decision-making problems which must satisfy the constraints to optimize the objective function in strictly given conditions in this study. Introducing the Process used in this study after the establishment of a general mixed integer Programming(MIP) model based upon the result of existing studies to decide the location and size simultaneously, a fuzzy mixed integer Programming(FMIP) model has been developed in the use of fuzzy theory. And the general linear Programming software, LINDO 6.01 has been used to simulate, to evaluate the developed model with the examples and to judge of the appropriateness and adaptability of the model(FMIP) in the real world.

  • PDF

A Study on an Efficient Double-fleet Operation of the Korean High Speed Rail (한국 고속철도의 효율적 중련편성 운영방법에 대한 연구)

  • Oh, Seog-Moon;Sohn, Moo-Sung;Choi, In-Chan
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.742-750
    • /
    • 2007
  • This paper presents a mathematical model for a double-fleet operation in Korean high speed rail (HSR). KORAIL has a plan to launch new HSR units in 2010, which are composed of 10 railcars. The double-fleet operation assigns a single-unit or two-unit fleet to a segment, accommodating demand fluctuation. The proposed model assumes stochastic demand and uses chance-constrained constraints to assure a preset service level. It can be used in the tactical planning stage of the rail management as it includes several real-world conditions, such as the capacities of the infra-structures and operational procedures. In the solution approach, the expected revenue in the objective function is linearized by using expected marginal revenue, and the chance-constrained constraints are linearized by assuming that demands are normally distributed. Subsequently, the model can be solved by a mixed-integer linear programming solver fur small size problems. The test results of the model applied to Friday morning train schedules for one month sample data from KTX operation in 2004 shows that the proposed model could be utilized to determine the effectiveness of double-fleet operation, which could significantly increase the expected profit and seat utilization rates when properly maneuvered.

Exact Algorithm for the Weapon Target Assignment and Fire Scheduling Problem (표적 할당 및 사격순서결정문제를 위한 최적해 알고리즘 연구)

  • Cha, Young-Ho;Jeong, BongJoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.143-150
    • /
    • 2019
  • We focus on the weapon target assignment and fire scheduling problem (WTAFSP) with the objective of minimizing the makespan, i.e., the latest completion time of a given set of firing operations. In this study, we assume that there are m available weapons to fire at n targets (> m). The artillery attack operation consists of two steps of sequential procedure : assignment of weapons to the targets; and scheduling firing operations against the targets that are assigned to each weapon. This problem is a combination of weapon target assignment problem (WTAP) and fire scheduling problem (FSP). To solve this problem, we define the problem with a mixed integer programming model. Then, we develop exact algorithms based on a dynamic programming technique. Also, we suggest how to find lower bounds and upper bounds to a given problem. To evaluate the performance of developed exact algorithms, computational experiments are performed on randomly generated problems. From the results, we can see suggested exact algorithm solves problems of a medium size within a reasonable amount of computation time. Also, the results show that the computation time required for suggested exact algorithm can be seen to increase rapidly as the problem size grows. We report the result with analysis and give directions for future research for this study. This study is meaningful in that it suggests an exact algorithm for a more realistic problem than existing researches. Also, this study can provide a basis for developing algorithms that can solve larger size problems.

Development and Assessment of Hedging Rule for Han River Reservoir System Operation against Severe Drought (한강수계 저수지군의 갈수대응 운영을 위한 Hedging Rule의 개발과 적용성 평가)

  • Kim, Jeong Yup;Park, Myung Ky;Lee, Gi Ha;Jung, Kwan Sue
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.891-906
    • /
    • 2014
  • This study suggests the hedging rule of MIP (Mixed Integer Programing) in counting the risk evaluation criteria of the objective function and constraints in order to provide the optimum operating rule in reservoir system as constraining water shortage as much as possible which may happen in the downstream control point of water supply in the aspect of water system management. The proposed model is applied to the Han-river reservoir system for two testing periods (Case I: Jan. 1993~Dec. 1997, Case II: Jan. 1999~Dec. 2003). The model based on the hedging rule with trigger volume, estimated in this study shows that in Case I, the monthly minimum discharge was $310.6{\times}10^6m^3$ in the single operation, $56.3{\times}10^6m^3$ in the joint operation, and $317.5{\times}10^6m^3$ in the hedging rule and also, in Case II, the monthly minimum discharge was found to be $204.2{\times}10^6m^3$ in the single operation, $111.2{\times}10^6m^3$ in the joint operation, and $243.7{\times}10^6m^3$ in the hedging rule. In conclusion, the hedging rule, proposed in this study can decrease vulnerability while guarantees reliability and resiliency.