• Title/Summary/Keyword: Mixed Integer Programming Model

Search Result 231, Processing Time 0.022 seconds

MIXED INTEGER PROGRAMMING MODELS FOR DISPATCHING VEHICLES AT A CONTAINER TERMINAL

  • ZHANG LI WEI;YE RONG;HUANG SHELL YING;HSU WEN JING
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.145-170
    • /
    • 2005
  • This paper presents scheduling models for dispatching vehicles to accomplish a sequence of container jobs at the container terminal, in which the starting times as well as the order of vehicles for carrying out these jobs need to be determined. To deal with this scheduling problem, three mixed 0-1 integer programming models, Model 1, Model 2 and Model 3 are provided. We present interesting techniques to reformulate the two mixed integer programming models, Model 1 and Model 2, as pure 0-1 integer programming problems with simple constraint sets and present a lower bound for the optimal value of Model 1. Model 3 is a complicated mixed integer programming model because it involves a set of non-smooth constraints, but it can be proved that its solutions may be obtained by the so-called greedy algorithm. We present numerical results showing that Model 3 is the best among these three models and the greedy algorithm is capable of solving large scale problems.

Optimal Unit Commitment of Hydropower System Using Combined Mixed Integer Programming (통합혼합정수계획법 모형을 이용한 수력발전소의 최적 발전기 운영계획 수립)

  • Lee, Jae-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.5
    • /
    • pp.525-535
    • /
    • 1999
  • An optimal unit commitment model for efficient management of water and energy resources in a basin using combined mixed integer programming is developed. The combined mixed integer programming model is able to solve the inconsistency problem that may occur from mixed integer programming models. The technique which enables the use of conditional constraints and either-or constraints in the linear programming is also suggested. As a result of applying the combined mixed integer programming model to Lower Colorado River Basin in United States. the basin efficiency is decreased by 1.53% from the results of the mixed integer programming, while it is increased by 0.67% from the results of the historical operation. It is found that the decreased allowable error between power supplies and demands in the combined mixed integer programming causes the decreased basin efficiency.

  • PDF

Industrial application of gross error estimation and data reconciliation to byproduction gases in iron and steel making plants

  • Yi, Heui-Seok;Hakchul Shin;Kim, Jeong-Hwan;Chonghun Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.69.2-69
    • /
    • 2002
  • Process measurements contain random and gross errors and the size estimation of gross errors is required for production accounting. Mixed integer programming technique had been applied to identify and estimate the gross errors simultaneously. However, the compensate model based on mixed integer programming used all measured variables or spanning tree as gross error candidates. This makes gross error estimation problem combinatorial or computationally expensive. Mixed integer programming with test statistics is proposed for computationally inexpensive gross error identification /estimation. The gross error candidates are identified by measurement test and the set of gross error candidates are...

  • PDF

A Multiple Objective Mixed Integer Programming Model for Sewer Rehabilitation Planning (하수관리 정비 계획 수립을 위한 다중 목적 혼합 정수계획 모형)

  • Lee Yongdae;Kim Sheung Kown;Kim Jaehee;Kim Joonghun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.660-667
    • /
    • 2003
  • In this study, a Multiple Objective Mixed Integer Programming (MOMIP) Model is developed for sewer rehabilitation planning by considering cost, inflow/infiltration. A sewer rehabilitation planning model is required to decide the economic life of the sewer by considering trade-off between cost and inflow/infiltration. And it is required to find the optimal rehabilitation timing, according to the cost effectiveness of each sewer rehabilitation within the budget. To develop such a model, a multiple objective mixed integer programming model is formulated based on network flow optimization. The network is composed of state nodes and arcs. The state nodes represent the remaining life and the arcs represent the change of the state. The model consider multiple objectives which are cost minimization and minimization of inflow/infiltration. Using the multiple objective optimization, the trade-off between the cost and inflow/infiltration is presented to the planner so that a proper sewer rehabilitation plan can be selected.

  • PDF

A Study on Scheduling of Scrap Disposal for Deap-sea Fishing Industry Using a Mixed Integer Programming Model (혼합정수계획 모형을 활용한 원양산업의 최적 감척 일정계획 수립에 관한 연구)

  • Kim, Jae-Hee
    • Korean Management Science Review
    • /
    • v.27 no.2
    • /
    • pp.55-66
    • /
    • 2010
  • In Korea, deap-sea fishing industry plays an important role in a food industry. However, it is in a difficult situation because of the more competitive business environment. Therefore, there is a need to restructure the deap-sea fishing industry by scraping superannuated ships. This paper is designed to present scrap programs for deap-sea fishing industry of Korea. We performed ratio analysis to evaluate financial performance of fishing companies and then applied a mixed integer programming (MIP) model to identify optimal schedule for scraping. The results of the financial ratio analysis indicates that it is legible to provide governmental aid to Atlantic trawl, Northern Pacific trawl, and Indian ocean trawl with minimum required rate of return (MRR) of 3%, and the Atlantic strip fishing industry is qualified to receive the governmental aid with MRR value of 5%. Furthermore, by applying the MIP model to develop scrap planning, we demonstrate how our model can be used to restructure the deap-sea fishing industry of Korea.

The Optimal Allocation of Aircrafts to Targets by Using Mixed Integer Programming (혼합정수계획법을 이용한 항공기-목표물 최적할당에 관한 연구)

  • Lee, Dae-Ryeock;Yang, Jae-Hwan
    • Korean Management Science Review
    • /
    • v.25 no.1
    • /
    • pp.55-74
    • /
    • 2008
  • In recent warfare, the performance improvement of air weapon systems enables an aircraft to strike multiple targets on a single sortie. Further, aircrafts attacking targets may carry out an operation as a strike package that is composed of bombers, escort aircrafts, SEAD (Suppression of Enemy Air Defenses) aircrafts and etc. In this paper, we present an aircraft allocation model that allocates multiple targets to a single sortie in the form of a strike package. A mixed integer programming is developed and solved by using a commercially available software. The new model is better than existing ones because not only it allocates aircrafts to multiple targets but also it models the concept of the strike package. We perform a computational experiment to compare the result of the new model with that of existing ones, and perform sensitivity analysis by varying a couple of important parameters.

Design of Mixed Integer Linear Programming Model for Transportation Planning (혼합 정수 선형 계획법을 이용한 수송 계획 모델 설계)

  • Park, Yong Kuk;Lee, Min Goo;Jung, Kyung Kwon;Won, Young-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.166-174
    • /
    • 2016
  • In this paper, we developed a mixed-integer linear programming model for transportation planning of athletes in sports events. The transportation planning of athletes involves finding the lowest-cost and fastest-time plan for distributing athletes from multiple accommodation to stadium. The decision variables associate with the number of driving events, and the total transportation cost is the objective function that needs to be minimized. The proposed method uses mixed integer linear programming to solve transportation problem, thus the global optimality is guaranteed. In order to verify the effectiveness of proposed method, we performed simulation and built the sports event management service platform (SEMSP) for transportation planning.

A Mixed Integer Programming Model for Bulk Cargo Ship Scheduling with a Single Loading Port

  • Seong-Cheol Cho
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.4
    • /
    • pp.15-19
    • /
    • 1998
  • This paper concerns a bulk or semibulk cargo ship scheduling problem with a single loading port. This type of ship scheduling problem is frequently needed in real world for carrying minerals or agricultural produce from a major single production zone to many destinations scattered over a large area of the world. The first optimization model for this problem was introduced by Ronen (1986) as a nonlinear mixed integer program. The model developed in this paper is an improvement of his model in the sense that nonlinearities and numerous unnecessary integer variables have been eliminated. By this improvement we could expect real world instances of moderate sizes to be solved optimal solutions by commercial integer programming software. Similarity between the ship scheduling model and the capacitated facility location model is also discussed.

  • PDF

A Mixed-Integer Programming Model for Effective Distribution of Relief Supplies in Disaster (재난 구호품의 효과적 분배를 위한 혼합정수계획 모형)

  • Kim, Heungseob
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.1
    • /
    • pp.26-36
    • /
    • 2021
  • The topic of this study is the field of humanitarian logistics for disaster response. Many existing studies have revealed that compliance with the golden time in response to a disaster determines the success or failure of relief activities, and logistics costs account for 80% of the disaster response cost. Besides, the agility, responsiveness, and effectiveness of the humanitarian logistics system are emphasized in consideration of the disaster situation's characteristics, such as the urgency of life-saving and rapid environmental changes. In other words, they emphasize the importance of logistics activities in disaster response, which includes the effective and efficient distribution of relief supplies. This study proposes a mathematical model for establishing a transport plan to distribute relief supplies in a disaster situation. To determine vehicles' route and the amount of relief for cities suffering a disaster, it mainly considers the urgency, effectiveness (restoration rate), and uncertainty in the logistics system. The model is initially developed as a mixed-integer nonlinear programming (MINLP) model containing some nonlinear functions and transform into a Mixed-integer linear programming (MILP) model using a logarithmic transformation and piecewise linear approximation method. Furthermore, a minimax problem is suggested to search for breakpoints and slopes to define a piecewise linear function that minimizes the linear approximation error. A numerical experiment is performed to verify the MILP model, and linear approximation error is also analyzed in the experiment.

Mixed Integer Linear Programming Model to Determine the Optimal Levels of Technical Attributes in QFD under Multi-Segment Market (다수의 마켓 세그먼트 하에서 품질기능전개 시(時) 기술특성들의 최적 값을 결정하기 위한 혼합정수계획모형)

  • Yang, Jae Young;Yoo, Jaewook
    • Korean Management Science Review
    • /
    • v.33 no.2
    • /
    • pp.75-87
    • /
    • 2016
  • Quality function deployment (QFD) is a widely adopted customer-oriented product development methodology by analyzing customer requirements. It is a main activity in QFD planning process to determine the optimal values of the technical attributes (TAs) so as to achieve the customer requirements (CRs) from the House of Quality (HoQ). In most of the previous research, all the TAs in QFD are assumed to have either continuous or discrete values. In the real world applications, the continuous TAs and the discrete TAs are often mixed in QFD. In this paper, a mixed integer linear programming model is formulated to obtain the optimal values for the continuous TAs and the discrete TAs in QFD planning as well as Branch and Bound (B and B) algorithm is proposed as the solution approach. Finally, the proposed model and solution approach are illustrated with an office chair under multi-segment market, and the sensitivity analysis is performed to study how the proposed model and its solutions respond to the variation for the two elements which are budget and CRs' weights.