• Title/Summary/Keyword: Mixed Heavy Metal

Search Result 209, Processing Time 0.031 seconds

Energy conversion of petroleum coke : CO2 gasification (석유 코크스의 에너지 전환 : CO2 가스화)

  • Kook, Jin-Woo;Gwak, In-Seop;Lee, See-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.255-257
    • /
    • 2014
  • The installation of light oil facilities or delayed cokers seems to be inevitable in the oil refinery industry due to the heavy crude oil reserves and the increased use of light fuels as petroleum products. Petroleum coke is a byproduct of oil refineries and it has higher fixed carbon content, higher calorific value, and lower ash content than coal. However, its sulfur content and heavy metal content are higher than coal. In spite of disadvantages, petroleum coke might be one of promising resources due to gasification processes. The gasification of petroleum coke can improve economic value of oil refinery industries by handling cheap, toxic wastes in an environment-friendly way. In this study, $CO_2$ gasification reaction kinetics of petroleum coke, various coals and mixing coal with petroleum coke have investigated and been compared by using TGA. The kinetics of $CO_2$ gasification has been performed with petroleum coke, 3 kinds of bituminous coal [BENGALLA, White Haven, TALDINSKY], and 3 kinds of sub-bituminous coal [KPU, LG, MSJ] at various temperature[$1100-1400^{\circ}C$].

  • PDF

A study on recycling of cast as adsorbent (흡착제로서 분변토 재활용에 관한 연구)

  • 손희정;전성균;하상안
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.44-49
    • /
    • 2000
  • The purpose of this research is to evaluate the adsorption capacity of casts for heavy metals. The casts were excreted by earthworm, Lumbricus rubellus, after having eaten the paper sludge. Various batch experiments on adsorption were performed to compare cast and activated carbon. The pH increase in solution due to extractives from cast was 1.3 and the cation exchange capacity which implies adsorption capacity for solubles is greater on activated carbon than on cast. According to the results of batch experiment, the removal rates of Pb, Cu, Cr, Zn using the activated carbon and casts as adsorbent were 98%, 93%, 94%, 89%, 82% and 95%, 90%, 88%,80%, 66%, respectivity, and this removal were achived less than 90 minutes. It can be said that casts is so good adsorbent as activated carbon is, although adsorption carbon was found to be some large than those of casts through Freundlich isotherm applied for adsorption of soluble. As a result on the experiment of isothermic adsorption from the mixed component solution in the batch, the order of preferable elements in heavy metal adsorption was found to be Pb>Cd>Cu>Cr>Zn on activated carbon, respectively.

  • PDF

A Study on the Recycling of Metals and Removal of Organics By Electrochemical Treatment of Mixed Waste Water of Surface Finishing Industry (표면처리 공정에서 발생하는 혼합 폐수의 전기화학적 처리에 의한 중금속의 재활용 및 유기물의 제거에 관한 연구)

  • 김영석;이중배
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.184-193
    • /
    • 2003
  • Cyclic sweep voltametry was performed to investigate the electrochemical behavior of heavy metal ions and the organic additives in surface finishing process. And electrolysis using parallel plate electrode electrolyzer was carried out to simulate the treatment of real waste water. Results showed that more than 99 percent of Cu was recovered and selective recovery of Cu in mixed waste water was possible, but the possibility of economical recovery of Ni and Cr were very low due to the evolution of hydrogen gas. Electrochemical oxidation of cyanide and organic additives on anode showed very excellent removal rate. The complete removal of several hundred ppm of cynide was possible within several tens minutes and organics within 2 or 3 hours. Even in case of concentrate waste water, the complete removal of COD by using NaCl and air stirring seemed to be possible.

Study of Solidification by Using Portland and MSG(micro silica grouting) Cements for Metal Mine Tailing Treatment (금속 광미 처리를 위한 포틀랜드 시멘트와 MSG(micro silica grouting) 시멘트 고형화 실증 실험 연구)

  • Jeon, Ji-Hye;Kim, In-Su;Lee, Min-Hee;Jang, Yun-Young
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.699-710
    • /
    • 2006
  • Batch scale experiments to investigate the efficiency of the solidification process for metal mine tailing treatment were performed. Portland and MSG (micro silica pouting) cements were used as solidifier and three kinds of mine tailings (located at Gishi, Daeryang, and Aujeon mine) were mixed with cements to paste solidified matrices. Single axis com-pressible strengths of solidified matrices were measured and their heavy metal extraction ratios were calculated to investigate the solidification efficiency of solidified matrices created in experiments. Solidified matrices ($5cm{\times}5cm{\times}5cm$) were molded from the paste of tailing and cements at various conditions such as different tailing/cement ratio, cement/water ratio, and different cement or tailing types. Compressible strengths of solidified matrices after 7, 14, and 28 day cementation were measured and their strengths ranged from 1 to $2kgf/mm^2$, which were higher than Korean limit of compressible strength for the inside wall of the isolated landfill facility ($0.21kgf/mm^2$). Heavy metal extractions from intact tailings and powdered matrices by using the weak acidic solution were performed. As concentration of extraction solution for the powdered solidified matrix (Portland cement + Gishi tailing at 1:1 w.t. ratio) decreased down to 9.7 mg/L, which was one fifth of As extraction concentration for intact Gishi tailings. Pb extraction concentration of the solidified matrix also decreased to lower than one fourth of intact tailing extraction concentration. Heavy metal extraction batch experiments by using various pH conditions of solution were also performed to investigate the solidification efficiency reducing heavy metal extraction rate from the solidified matrix. With pH 1 and 13 of solution, Zn and Pb concentration of solution were over the groundwater tolerance limit, but at pH $1{\sim}13$ of solution, heavy metal concentrations dramatically decreased and were lower than the groundwater tolerance limit. While the solidified matrix was immerged Into very acidic or basic solution (pH 1 and 13), pH of solution changed to $9{\sim}10$ because of the buffering effect of the matrix. It was suggested that the continuous extraction of heavy metals from the solidified matrix is limited even in the extremely high or low pH of contact water. Results of experiments suggested that the solidification process by using Portland and MSG cements has a great possibility to treat heavy metal contaminated mine tailing.

Comparison of Pollutant Removal Efficiency in Road Sediment with Media Using Filter Separator (필터 분리기를 이용한 여재별 도로퇴적물의 오염물질 제거효율 비교)

  • Bang, Ki-Woong;Lee, Jun-Ho;Choi, Chang-Su;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.332-340
    • /
    • 2007
  • Storm runoff from road contains significant loads of particulate and dissolved solids, organic constituents and metal elements. Micro particle is important when considering pollution mitigation because pollutant metal and organics have similar behavior with particles. The objective of this research is to evaluate the hydrodynamic filter separator performance for road storm runoff treatment. A various types of media such as perlite, granular activated carbon, zeolite were used for column test packing media and filter separator, and to determine the removal efficiency with various surface loading rate. As the results of column test, the highest SS removal efficiency was using mixed media(granular activated carbon, zeolite and perlite), and granular activated carbon mixed with zeolite has higher heavy metal removal efficiency than perlite. In laboratory scale hydrodynamic filter separator study, the operation ranges of surface loading rates were from 192 to 1,469 $m^3/m^2/day$. The estimated overall removal efficiencies of hydrodynamic filter separator for typical storm runoff were SS 48.1%, BOD 31.9%, COD 32.6%, TN 15.5%, and TP 17.3%, respectively. For the case of heavy metals, overall removal efficiencies were Fe 26.0%, Cu 19.4%, Cr 25.7, Zn 16.6%, and Pb 15.0%, respectively. The most appropriate medium for hydrodynamic filter separator was perlite mixed with granular activated carbon to treatment of road storm runoff.

The heavy metal contaminations of sediments from some gully-pots : eastern part of seoul, Korea (도로변 우수관 퇴적물의 중금속오염 (I) : 서울시 동부지역)

  • 이평구;김성환;윤성택
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.25-40
    • /
    • 2001
  • In order to investigate the degree of heavy metal pollution, 280 urban gully-pot sediments were collected from 13 localities in eastern part of Seoul. The uncontaminated stream sediments were also studied for comparison. A series of studies have carried out concerning the physicochemical characteristics of the sediments and the distribution of Cd, Co, Cr, Cu, Ni, Pb, and Zn. Total metal concentrations of gully-pot sediments and uncontaminated stream sediments were analyzed using acid extraction. After predigestion with $NHO_3$, the sample was digested with mixed acid ($NHO_3$-$HClO_4$). The gully-pot sediments were characterized by very high concentrations of Zn, Cu, Pb and Cr, indicating an anthropogenic contribution of these metals to the sediment chemistry Heavy metal concentrations in the gully-pot sediments were 1-329 times higher than the mean content of metals in the uncontaminated stream sediments, depending on the metals. In particular, the highest mean concentrations of Zn, Cu, Pb and Cr were noticed in the gully-pot sediments from Yeouido, Junggu, Junggu, and Dongdaemungu, respectively. The mean value of total Zn concentration in the business and commercial areas is 2-3.5 times higher than that in industrial areas. This suggests that Zn is mainly derived from automobiles (rubber of automobile tires). The mean concentrations of Cu and Cr are significantly high in the commercial and industrial areas, indicating that industrial activities may cause the accumulation of Cu and Cr in the sediments. The Pb level in gully-pot sediments is comparatively low, due to the use of unleaded gasoline in automobiles since 1987.

  • PDF

Adsorption characteristics of As(III) and Cr(VI) from aqueous solution by Sediment Amendment Composite (저질개선제에 의한 수용액상의 As(III)와 Cr(VI) 흡착 특성)

  • Shin, Woo-Seok;Na, Kyu-Ri;Kim, Young-Kee
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.216-221
    • /
    • 2016
  • The adsorption characteristics of mixed heavy metals (Cr(III), As(VI)) in aqueous solution were investigated using a sediment amendment composite. Sediment amendment composite was composed of clean sediment (40%), zeolite (20%), recycled aggregate (10%), steel slag (10%), oyster shell (10%), and cement (10%). The experimental results showed that the adsorption equilibrium was attained after 180 mins. Heavy metal adsorption was characterized using Freundlich and Langmuir equations. The equilibrium adsorption data for the sediment amendment composite better fitted with the Langmuir model than the Freundlich model. The maximum adsorption capacity of Cr(VI) (36.07 mg/g) was higher than As(III) (25.54 mg/g); and the adsorption efficiency of the Cr(VI) and As(III) ions solution decreased with decreasing pH from 2 to 10. The collective results suggested that the sediment amendment composite is a promising material for a reactive cap that controls the release of Cr(VI) and As(III) from contaminated sediments.

Removal Characteristics of Heavy Metals in Acid Wastewater by Ceramics Using Natural Zeolite and Converter Slag (천연제올라이트와 제강전로슬래그를 이용한 세라믹 소재에 의한 산성폐수 내 중금속의 제거특성)

  • Kim, Dong-Hee;Yim, Soo-Bin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.239-246
    • /
    • 2012
  • This study was performed to investigate the removal characteristics and mechanism of heavy metals using pellet-type ceramics(ZS ceramics), in which natural zeolite was mixed and calcined with converter slag. The optimal calcination temperature range was measured to be $600{\sim}800^{\circ}C$. The calcination time had little effect on the removal of heavy metal in acid wastewater. The adequate dose of ceramics was shown to be 2~5% for removal of heavy metals in acid wastewater. The maximum removal capacity of ZS ceramics for heavy metals were observed to be Al 84.7 mg/g, Cd 37.3 mg/g, Cr 81.7 mg/g, Cu 55.6 mg/g, Fe 57.2 mg/g, Mn 32.1 mg/g, Ni 38.0 mg/g, Pb 71.6 mg/g, Zn 46.3 mg/g. The pH played a pivotal role in the removal of heavy metals by ZS ceramics. The analysis results of mechanism exhibited that the ZS ceramics could act as a multi-functional ceramics for removal of heavy metals in acid wastewater by adsorption, ion-exchange, or precipitation.

Characteristics of Stabilization and Adsorption of Heavy Metal (As3+, Cr6+) by Modified Activated Carbon (표면 개질 활성탄에 의한 중금속(As3+, Cr6+) 흡착 및 안정화 특성)

  • Shin, Woo-Seok;Na, Kyu-Ri;Kim, Young-Kee
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.185-192
    • /
    • 2015
  • In this study, the adsorption efficiency of mixed heavy metals in aqueous solution was investigated using modified activated carbon. Moreover, the heavy-metal stabilization treatment of contaminated marine sediment was achieved using modified activated carbon as stabilizing agents. From the experimental results, it was shown that the adsorption equilibrium was attained after 120 mins. Heavy metal adsorption was characterized using Freundlich and Langmuir equations. The equilibrium adsorption data were fitted well to the Langmuir model in modified activated carbon. The adsorption uptake of $As^{3+}$ (28.47 mg/g) was higher than $Cr^{6+}$ (13.28 mg/g). In case of the $Cr^{6+}$, the results showed that adsorption uptake decreased with increasing pH from 6 to 10. However, adsorption of $As^{3+}$ slightly increased in the increasing change of pH. The modified activated carbon was applied for a wet-curing duration of 120 days. From the sequential extraction results, the exchangeable, carbonate, and oxides fractions of Cr and As in sediment decreased by 5.8% and 7.6%, respectively.

The Dissolution Characteristics of Metal Compounds in Soil Application Experiment using Sewage Treatment Sludge mixed with Oyster shells (하수슬러지 및 굴껍질의 토지주입시 금속성분의 용출특성에 관한 연구)

  • Kim, Chul;Moon, Jong-Ik;Shin, Nam-Cheol;Ha, Sang-An;Sung, Nak-Chang;Huh, Mock
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.2
    • /
    • pp.71-76
    • /
    • 2001
  • Recently, sludge disposal becomes one of the most serious environmental problems. Because the landfilling and ocean dumping of sludge materials will be prohibited in the near future, the proper treatment?disposal methods should be investigated. Also, oyster shells, piled at the coast, cause adverse effects in coastal fishery, public water surface, natural landscape, public health and so on. Thus, the purpose of this study is to evaluate the dissolution characteristic of metal compounds during soil application experiment using sewage treatment sludge mixed with oyster shells. The dissolution experiment conducted 100days under artificial rainfall and farming soil, mixed with sewage treatment sludge and oyster shells, was put into the pots(approx. 0.5L). The results from dissolution experiment as follows. 1. K, Na was $5{\sim}20mg/{\ell}$, and Ca was less than $90mg/{\ell}$. 2. Heavy metals such as Cd, Cu, As, Pb, Cr, Hg are dissoluted far less than the soil pollution guideline. The application of sewage sludge mixed with oyster shells increases pH(soil acidity)and buffer capacity(CEC) of farming soil, and heavy metals are thought to be attached to soil as insoluble forms.

  • PDF