• Title/Summary/Keyword: Mixed Gases

Search Result 231, Processing Time 0.021 seconds

Characteristics of dissolved gases separated from water mixed with exhalation gases without using a compressor

  • Heo, Pil Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.916-921
    • /
    • 2016
  • It is possible for humans to breathe underwater using dissolved oxygen. However, unlike fish, humans need large amounts of oxygen to breathe underwater. Water generally contains small amounts of dissolved oxygen. To get enough dissolved oxygen from water, great volumes of it should be supplied into a separation device. If exhalation gases are used, the amounts of water supplied into the membrane can be decreased. However, the characteristics of exhalation gases after passage through the separation device need to be investigated. To reuse the exhalation gases, the concentration of carbon dioxide should be decreased. A compressor is needed to supply the exhalation gases because of the high pressure generated in the membrane inlet. However, compressors require a lot of power and are heavy, so it is not proper to get the portable separation device. A system without the compressor is needed. If the pressure of the position mixed from the exhalation is less than atmosphere, the compressor is not needed. In this thesis, characteristics of the gases which are mixed with exhalation gases and separated from water after passing the membrane are investigated. The compositions of carbon dioxide, oxygen, and nitrogen are measured with the gas chromatography. The effects of water and exhalation gas flow rates on characteristics of gases separated from water after the membrane are showed.

A Study on the Dynamic Characteristics of Nitrogen Mixed Gas for Thermostatic Expansion Valve Sensing Blub (온도 감지식 팽창밸브 감온통 질소가스 혼합냉매의 동특성 연구)

  • Kim, Si-Young;Koo, Su-Jin;Ju, Chang-Sik
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.69-75
    • /
    • 2014
  • The pressure and temperature characteristics of mixed refrigerant gases in bulb for thermostatic expansion valve were studied using R22 refrigerant and $N_2$ gases. The characteristics of mixed refrigerant gases were investigated according to pressure variation and the variation of composition ratio of R22 refrigerant and $N_2$ gases in the temperature range of -$15^{\circ}C$~$15^{\circ}C$. The Maximum operating pressure(MOP) of mixed refrigerant gases were showed a tendency to decrease with decreasing the mixing ratio of $N_2$ gas. The characteristics in the case of the mixing ratio of 90:1 for R22 refrigerant and $N_2$ gases were the same result as Reference refrigerant. In addition, the characteristics of the mixed refrigerant gases in the mixing ratio of 90:1 for R22 refrigerant and $N_2$ gases were showed almost linear in the measurement range of pressure-temperature, and the physical properties also were showed similar results with Reference refrigerant. It was able to confirm that a MOP on the thermostatic expansion valve for sensing bulb can be maintained by adjusting the mixing ratio of R22 refrigerant and $N_2$ gases.

A Study on the Additives of mixed Gas charged in Thermostatic Bulb for Expansion Valve (팽창밸브 개폐용 감온통 혼합가스의 첨가제 연구)

  • Kim, Si-Young;Ju, Chang-Sik;Koo, Su-Jin
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.126-132
    • /
    • 2014
  • The P-T characteristics of mixed refrigerant in thermostatic expansion valve sensing bulb were studied using R-134a and R-410A refrigerant. The characteristics of mixed refrigerant were investigated according to pressure variation and the variation of composition ratio of R-134A and R-410A in the temperature range of $-15^{\circ}C{\sim}15^{\circ}C$. The Thermodynamic characteristic values of the mixed refrigerants were identified using the characteristic value analysis program of mixed refrigerant(Refrop v9.0, NIST). The P-T characteristics in the case of the mixing ratio of 90:10 for R-410A and R-134A were the same result as R-22. And the physical properties showed similar results with R-22. The Maximum operating pressure(MOP) of mixed refrigerant showed a tendency to decrease with decreasing the mixing ratio of additive gases($N_2$ or He) gases. The characteristics in the case of the mixing ratio of 80:1 for mixed refrigerant and additive gases were the similar result as Reference refrigerant.(R-22 MOP, Sporlan company) In addition $N_2$ and He, both showed the same results. It was able to confirm that a MOP on the thermostatic expansion valve sensing bulb can be maintained by adjusting the mixing ratio of mixed refrigerant gases and additive gases.

PERMEATION OF PURE AND MIXED GASES THROUGH COMPOSITE MEMBRANES PREPARED BY PLASMA POLYMERLZATION OF FLUOROCARBONS

  • Koo, Ja-Kyoung;Kim, Byoung-Sik
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.04b
    • /
    • pp.13-16
    • /
    • 1997
  • The permeation, solution and diffusion of simple gases ($He, H_2, O_2, N_2$ and CH$_4$) and condensible vapers($CO_2, SO_2, C_2H_4$ and $C_3H_8$), and the mixed gases ($O_2/N_2$ mixtures and $CO_2/CH_4$ mixtures) through composite membrane was studied. Composit membranes were made by deposition of aromatic fluorocarbons onto polymer substrams of porous Celgard in a microwave discharge. In the both cases of simple gases and condensible vapors, as the kinetic molecular diameter of the permeant molecules increased, the permeability decreased. However, when the kinetic molecular dimemr are similar, the condensible vapors showed higher permeabilities than that of permanent gases. The vapor solubility increased with increasing critical temperature of the vapors. However, in the case of propane, despite its high critical temperature, it showed lower solubility than other vapors. The vapor diffusivity decreased with increasing kinetic diameter of the molecule. Compared to conventional polymers, the plasma polymers showed much lower values for vapor diffusivities. The pressure of the permeant did not affect the permeability. The permeability was also not affected by the composition in cases of mixed gases.

  • PDF

Separation characteristics of separation devices using inlet water mixed with exhalation gases without a compressor (날숨이 혼합된 물을 사용한 압축기없는 용존기체 분리기의 분리 특성)

  • Heo, Pil Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.842-846
    • /
    • 2016
  • It's possible for a human to breathe under water, but the amount of dissolved oxygen in the water is small and a large amount of water is necessary to obtain sufficient dissolved oxygen from water. So, large separation system with large water pumps, having large surface areas, and large battery sources are needed. Exhalation gases are used to solve this problem. Theses gases contain some oxygen, nitrogen, and carbon dioxide; they contain less oxygen and more carbon dioxide compared to air. Therefore, reduction of the amount of carbon dioxide is necessary. If exhalation gases are employed appropriately, the separation device can be made more compact. Inlet water mixed with exhalation gases is supplied into the separation device, and dissolved gases are separated from the mixed water as it passes through the device. The inlet part of a typical separation system with a water delivery pump before the membrane module has more than one atmosphere. Hence, a compressor is used to mix the exhalation gases. In this study, the pressure at the inlet due to the use of a suction pump after the membrane module was less than one atmosphere; hence, compressors were not required. Separation characteristics were studied using a separation device without a compressor. The use of exhalation gases led to an increase in the amount of dissolved gases being separated. As the amount of inlet exhalation gases was increased, the separation of dissolved gases was increased as well.

High-Temperature Oxidation Behavior of Commercial Pure Titanium in Mixed Gases (혼합가스 분위기 중에서 공업용 순 타이타늄의 고온산화 거동)

  • Park, S.H.;Ahn, Y.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.2
    • /
    • pp.44-50
    • /
    • 2007
  • The oxidation behavior of commercial pure titanium is investigated in the temperature range of $727^{\circ}C{\sim}950^{\circ}C$ in mixed gases. The weight change is measured by TGA during oxidation in mixed gases. The oxidation behavior indicated by weight gain or the growth of oxide layer is based on the linear rate law at high temperatures. The structure of the oxide scale formed during oxidation is analysed by optical microscopy, electron probe microanalyzer, scanning electron microscope and x-ray diffraction. Oxide scales have a $TiO_2$ structure, and are constituted with multi-layered or two layered porous external one and a dense internal one. Ti-O solid solution region is formed at the interface of metal and scale layer. The formation of oxide scale is influenced by the oxidation temperature, time, crystal structure and the condition of atmosphere.

  • PDF

Corrosion of Fe-2%Mn-0.5%Si Steels at 600-800℃ in N2/H2O/H2S Atmospheres

  • Kim, Min-Jung;Park, Sang-Hwan;Lee, Dong-Bok
    • Journal of Surface Science and Engineering
    • /
    • v.44 no.5
    • /
    • pp.201-206
    • /
    • 2011
  • Fe-2%Mn-0.5%Si alloys were corroded at 600, 700 and $800^{\circ}C$ for up to 70 h in 1 atm of $N_2$ gas, or 1 atm of $N_2/H_2O$-mixed gases, or 1 atm of $N_2/H_2O/H_2S$-mixed gases. Oxidation prevailed in $N_2$ and $N_2/H_2O$ gases, whereas sulfidation dominated in $N_2/H_2O/H_2S$ gases. The oxidation/sulfidation rates increased in the order of $N_2$ gas, $N_2/H_2O$ gases, and, much more seriously, $N_2/H_2O/H_2S$ gases. The base element of Fe oxidized to $Fe_2O_3$ and $Fe_3O_4$ in $N_2$ and $N_2/H_2O$ gases, whereas it sulfidized to FeS in $N_2/H_2O/H_2S$ gases. The oxides or sulfides of Mn or Si were not detected from the XRD analyses, owing to their small amount or dissolution in FeS. Since FeS was present throughout the whole scale, the alloys were nonprotective in $N_2/H_2O/H_2S$ gases.

Effects of Ammonia on the Sulfur Dioxide Injury in Plants (식물의 아황산 가스 피해에 대한 암모니아 가스의 영향)

  • 성민웅
    • Journal of Plant Biology
    • /
    • v.16 no.1_2
    • /
    • pp.17-22
    • /
    • 1973
  • The experiments were conducted to examine the injuries of $SO_2$, $NH_3$, and $SO_2$ and NH3 mixed gas to the germination and the growth of plants. Six kinds of plants were used as the material. These plants seeds were treated with the gases for five days. Rate of the germination and the growth in height of varying plants were different according to the components of the gases. The critical concentration of the gases for both the germination and the growth were in 5ppm of $SO_2$, 50ppm of $NH_3$, and 50ppm $SO_2$ and 50ppm $NH_3$ mixed gases. When a low concentration of $SO_2$ was treated together with NH3, especially it was reduced to 60 percent of the damage in the germination and the growth. In the treatemnt with $SO_2$, the germination of the seeds which soaked in water for 24 hours reduced the injuries more 40 percent than those which for one hour. It was observed that the seeds with thick coasts or with originally intact coats were suffered but little damaged by the gases, and the external symptoms of an injury were shown, at first, in water pore, and then, in guard cell on the leaves.

  • PDF

Identification of Gas Mixture with the MEMS Sensor Arrays by a Pattern Recognition

  • Bum-Joon Kim;Jung-Sik Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.5
    • /
    • pp.235-241
    • /
    • 2024
  • Gas identification techniques using pattern recognition methods were developed from four micro-electronic gas sensors for noxious gas mixture analysis. The target gases for the air quality monitoring inside vehicles were two exhaust gases, carbon monoxide (CO) and nitrogen oxides (NOx), and two odor gases, ammonia (NH3) and formaldehyde (HCHO). Four MEMS gas sensors with sensing materials of Pd-SnO2 for CO, In2O3 for NOX, Ru-WO3 for NH3, and hybridized SnO2-ZnO material for HCHO were fabricated. In six binary mixed gas systems with oxidizing and reducing gases, the gas sensing behaviors and the sensor responses of these methods were examined for the discrimination of gas species. The gas sensitivity data was extracted and their patterns were determined using principal component analysis (PCA) techniques. The PCA plot results showed good separation among the mixed gas systems, suggesting that the gas mixture tests for noxious gases and their mixtures could be well classified and discriminated changes.

Analysis of biomarkers with tunable infrared gas sensors (가변 파장형 적외선 가스 센서에 의한 생체표지자 분석)

  • Yi, Seung Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.314-319
    • /
    • 2021
  • In this study, biomarkers were analyzed and segmented using tunable infrared gas sensors after performing the principal component analysis. The free spectral range of the device under test (DUT) was around 30 nm and DUT-5580 yielded the highest output voltage property among the others. The biomarkers (isoprophyl alcohol, ethanol, methanol, and acetone solutions) were sequentially mixed with deionized water and their mists were carried into the gas chamber using high-purity nitrogen gas. A total of 17 different mixed gases were tested with three tunable infrared gas sensors, namely DUT-3144, DUT-5580, and DUT-8010. DUT-8010 resolved the infrared absorption spectra of whole mixed gases. Based on the principal component analysis with each DUT and their combinations, each mixed gas and the trends in increasing gas concentration could be well analyzed when the contributions of the eigenvalues of the first and second were higher than 70% and 10%, respectively, and their sum was greater than 90%.