• Title/Summary/Keyword: Mixed Gas

Search Result 1,368, Processing Time 0.032 seconds

Effect of Different Silages for TMR on In vitro Rumen Simulative Fermentation

  • Mbiriri, David Tinotenda;Oh, Seong Jin;Choi, Nag-Jin
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.4
    • /
    • pp.379-386
    • /
    • 2012
  • In this study, the in vitro fermentation parameters of whole crop barley (WCBS-TMR) and Italian ryegrass (IRGS-TMR) silage total mixed rations were compared. A rice straw based diet (RSBD), which was a mixture of rice straw and concentrate (60:40), was used as the control. The feeds were incubated in buffered rumen fluid for 3, 6, 9, 12, 24, 48 and 72 hours at $39^{\circ}C$. At the end of each incubation period the following parameters were determined, total gas, pH, ammonia nitrogen ($NH_3$-N), volatile fatty acids (VFA) and then the acetate to propionate ratio (A/P) was calculated. The dietary treatments did not affect (p>0.05) the overall production of $NH_3$-N, gas, total VFA and all the individual VFA, with the exception of n-butyrate (p<0.001). The treatment diets significantly affected the A/P ratio (p<0.01). The control diet resulted in the lowest A/P ratios, followed by WCBS-TMR and lastly IRGS-TMR had the highest ratios. Gas production was not different between treatments, suggesting a probable similar level of digestibility when treatments are fed to animals. It can therefore be concluded from the present study that WCBS and IRGS are of almost an equivalent nutritional value when incubated in a TMR form. WCBS-TMR however resulted in lower A/P ratios than IRGS-TMR, which is indicative of a more energy efficient diet.

A Study on the Superstructure Optimization of LNG Liquefaction Process (LNG 액화공정 초구조 모델 최적화 연구)

  • Son, Heechang;Lim, Youngsub
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Because the expenditure of LNG liquefaction processes are high in a LNG project, it is very important to find a suitable liquefaction process model and optimal operating conditions for a project. Various configurations of LNG liquefaction processes have been suggested, and therefore it takes a lot of time and manpower to compare all of these models in order to select an appropriate liquefaction process for a project. A superstructure model can include multiple options in one model and can contribute to decide the best configuration and operating conditions at the same time. This study developed a superstructure model including multiple process options for SMR (Single Mixed Refrigerant) liquefaction process and optimized it. The results showed that the optimization results of the superstructure model have similar values with optimization results of the separate SMR model.

Effect of Inorganic Nanocomposite Based Liners on Deodorization of Kimchi

  • Chung, Kwon;Park, Hyun Jin;Shin, Yang Jai
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 2021
  • This study aims to reduce the rancid odor generated during the fermentation process of kimchi by inserting zinc oxide (ZnO) into an inorganic porous material with a high surface area to decompose or adsorb the fermentation odor. ZnO activated by the presence of moisture exhibits decomposition of rancid odors. Mixed with Titanium dioxide (TiO2), a photocatalyst. To manufacture the packaging liner used in this study, NaOH, ZnCl2, and TiO2 powder were placed in a tank with diatomite and water. The sludge obtained via a hydrothermal ultrasonication synthesis was sintered in an oven. After being pin-milled and melt-blended, the powders were mixed with linear low-density polyethylene (L-LDPE) to make a masterbatch (M/B), which was further used to manufacture liners. A gas detector (GasTiger 2000) was used to investigate the total amount of sulfur compounds during fermentation and determine the reduction rate of the odor-causing compounds. The packaging liner cross-section and surface were investigated using a scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS) to observe the adsorption of sulfur compounds. A variety of sulfur compounds associated with the perceived unpleasant odor of kimchi were analyzed using gas chromatography-mass spectrometry (GC-MS). For the analyses, kimchi was homogenized at room temperature and divided into several sample dishes. The performance of the liner was evaluated by comparing the total area of the GC-MS signals of major off-flavor sulfur compounds during the five days of fermentation at 20℃. As a result, Nano-grade inorganic compound liners reduced the sulfur content by 67 % on average, compared to ordinary polyethylene (PE) foam liners. Afterwards SEM-EDS was used to analyze the sulfur content adsorbed by the liners. The findings of this study strongly suggest that decomposition and adsorption of the odor-generating compounds occur more effectively in the newly-developed inorganic nanocomposite liners.

Characteristics of Landfill Gas Generation by Separate Landfill of Construction Waste and Mixed Landfill with Household Waste (건설폐기물 분리매립 및 생활폐기물과의 혼합매립에 의한 매립가스 발생 특성)

  • Jong-Keun, Park;Seung-Kyu, Chun
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.1-11
    • /
    • 2022
  • Landfill gas (LFG) generation characteristics in a construction waste landfill zone (block E) and mixed landfill zone (block A) were analyzed. During the period from October 2018 to April 2022, a total of 936×103 and 1,001×103 tons of waste were disposed in block E and block A, respectively. Out of this, 27.1% and 55.6% were biodegradable waste in block E and block A, respectively. The landfill masses of the two blocks were converted to be comparable. Then, the biodegradable waste and organic carbon were estimated by element analysis, biodegradable carbon by biochemical methane potential experiment (DC), and sulfate ion by acid decomposition. Results showed that biodegradable waste, organic carbon, biodegradable carbon, and sulfate ions in block A were 2.1, 1.6, 5.2, and 0.4 times greater than those in block E, respectively. The amount of LFG generated by block A was 4.8 times greater than that by block E. The average concentrations of methane (CH4) were 60.8% and 60.9% in block E and block A, respectively, which were unrelated to the nature of disposed waste. The average concentrations of hydrogen sulfide (H2S) were significantly high in block E (4,489 ppm) and block A (8,478 ppm). As the DC/SO42- of block E and block A were 0.35 and 4.56, respectively, increase in DC/SO42- caused increase in not only the total amount but also the concentration of H2S generated.

Hydrogen Enrichment Effects on NOx Formation in Pre-mixed Methane Flame (수소 첨가가 예혼합 메탄 화염의 NOx 생성에 미치는 영향)

  • Kim, H.S.;Ahn, K.Y.;Gupta, A.K.
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.1
    • /
    • pp.75-84
    • /
    • 2007
  • The effects of hydrogen enrichment to methane on NOx formation have been investigated with swirl stabilized pre-mixed hydrogen enriched methane flame in a laboratory-scale pre-mixed combustor(nominally of 5,000 kcal/hr). The hydrogen enriched methane fuel and air were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame stability was examined for different amount of hydrogen addition to the methane fuel, different combustion air flow rates and swirl strengths by comparing equivalence ratio at the lean flame limit. The hydrogen addition effects and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using gas analyzers, and OH chemiluminescence techniques to provide information about species concentration of emission gases and flowfield. The results of NOx and CO emissions were compared with a diffusion flame type combustor. The results show that the lean stability limit depends on the amount of hydrogen addition and the swirl intensity. The lean stability limit is extended by hydrogen addition, and is reduced for higher swirl intensity at lower equivalence ratio. The addition of hydrogen increases the NOx emission, however, this effect can be reduced by increasing either the excess air or swirl intensity. The NOx emission of hydrogen enriched methane premixed flame was lower than the corresponding diffusion flame under the fuel lean condition.

Study on the Comparison of New and Used Reliquefaction System of Boil-Off-Gas by LNG Cold Energy (냉열을 이용한 LNG 증발기체 BOG 재액화 신공정과 기존공정에 관한 비교연구)

  • Lee, Dong-Hyuck;Jang, Chang-Bong;Jung, Sang-Yong;Kim, Jung-Hwan;Lee, Heon-Seok;Kim, Bum-Su;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.42-46
    • /
    • 2010
  • BOG(Boil Off Gas) is formed about 0.05 vol%/day from LNG(Liquefied Natural Gas) tanks of LNG receiving terminal. To recycle the BOG using direct contacting, Previously the quantities of LNG and BOG is mixed at the ratio of 11:1 by mass. However simple this process uses, there is the difficulty of processing operation resulted from decrease of using LNG in summer. To complement these shortcomings, Advantages of the process are investigated by comparison of cost and analysis of the indirect contact method using LNG cold energy. It was studied that principles and types of development using LNG cold energy which is abandoned in the carburettor and found how to contact each to find the appropriate cold energy development process. Therefore, in this research, the indirect contact method will be investigated the feasibility of a comparative analysis by using HYSYS.

Characteristics of boil-off-gas partial re-liquefaction systems in LNG ships (LNG선박용 BOG 부분재액화 시스템 특성 연구)

  • Yun, Sang-Kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.174-179
    • /
    • 2016
  • To protect the ocean environment, the use of liquefied natural gas (LNG) carriers, bunkering ships, and fueled ships is increasing. Recently, Korean shipbuilders have developed and supplied a partial reliquefaction facility for boil-off-gas (BOG). Despite reasonable insulation, heat leakage in vessel storage tanks causes LNG to be continuously evaporated as BOG. This research analyzed the maximum liquid yield rate for various partial reliquefaction systems (PRS) and considered related factors affecting yields. The results showed a liquid yield of 48.7% from an indirect PRS system (heat exchanges between cold flash gas and compressed natural gas), and 41% from a direct PRS system (BOG is mixed with flash gas and discharged from a liquid-vapor separator). The primary factor affecting liquid yield was heat exchanger effectiveness; the exchanger's efficiency and insulation characteristics directly affect the performance of BOG reliquefaction systems.

Study on Simulation and Optimization of C3MR Liquefaction Cycle (천연가스 액화공정의 C3MR 냉동사이클의 공정모사와 최적화에 관한 연구)

  • Park, Chang Won;Cha, Kyu Sang;Lee, Sang Gyu;Lee, Chel Gu;Choi, Keun Hyung
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.67-72
    • /
    • 2013
  • The LNG liquefaction plant which have a higher value-added business in the LNG value chain takes about 35% of total cost. Liquefaction process is core technology of liquefaction plant. Almost all of cost which was consumed from the liquefaction plant, using for operation energy of liquefaction process. The cost can be reduced by increasing efficiency of liquefaction cycle. C3MR(propane pre-cooled, mixed refrigerant cycle) which liquefies NG using propane and MR cycle has the high efficiency, so C3MR is mostly used liquefaction process in LNG industry. In this study, process simulation and analysis were performed for C3MR process. C3MR process variables were found through this simulation and analysis, and then the process optimization was performed. It is considered that the results of process analysis, process variables and process optimization study can be utilized to develope new liquefaction process.

Characteristics of metal-loaded TiO2/SnO2 thick film gas sensor for detecting acetonitrile (아세토나이트릴 가스 검지를 위한 센스의 제작 및 특성)

  • Park, Young-Ho;Lee, Chang-Seop
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.2
    • /
    • pp.23-29
    • /
    • 2009
  • This study investigated sensitivity of the gas sensor to chemical weapons with the sensor material doped with catalysts. The nano-sized SnO2 powder mixed with metal oxides (TiO2) was doped with transition metals(Pt, Pd and In). Thick film of nano-sized SnO2 powder with TiO2 was prepared by screen-printing method onto Al2O3 substrates with platinum electrode and chemical precipitation method. The physical and chemical properties of sensor material were investigated by SEM/EDS, XRD and BET analyzers. The measured sensitivity to simulant toxic gas is defined as the percentage of resistance of value equation, [(Ra-Rg)/$Ra\;{\times}100$)], that of the resistance(Ra) of SnO2 film in air and the resistance(Rg) of SnO2 film in acetonitrile gas. The best sensitivity and selectivity of these thick film were shown with 1wt.% Pd and 1wt.% TiO2 for acetonitile gas at the operating temperature of $250^{\circ}C$.

  • PDF

Effects of Promoter on the Formation of Gas Hydrate from Blast Furnace Gas (철강공정 배기가스로부터 가스 하이드레이트 형성에 미치는 촉진제의 영향)

  • Kwak, Gye-Hoon;Sa, Jeong-Hoon;Kim, Si-Hwan;Lee, Bo Ram;Lee, Kun-Hong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.103-110
    • /
    • 2015
  • In this work, the performance of various promoters was investigated used in $CO_2$ separation from the gases emitted from steel-making process using gas hydrate technology. The studied promoters are tetrahydrofuran (THF), propylene oxide and 1,4-dioxane, which are all expected to form a structure II hydrate, and the target gases include $CO_2/N_2$ mixed gases ($CO_2/N_2$ = 20/80 and 40/60) and Blast Furnace Gas (BFG). The phase equilibrium points were measured when each promoter was added with various concentrations. For fast acquisition of abundant data, the "continuous" Quartz crystal microbalance (QCM) method was employed. In addition, the crystal structure of each gas hydrate was analyzed by Powder X-ray diffraction (PXRD).