• Title/Summary/Keyword: Mitochondrial stress

Search Result 323, Processing Time 0.029 seconds

Inhibition of Store-Operated Calcium Entry Protects Endothelial Progenitor Cells from H2O2-Induced Apoptosis

  • Wang, Yan-Wei;Zhang, Ji-Hang;Yu, Yang;Yu, Jie;Huang, Lan
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.371-379
    • /
    • 2016
  • Store-operated calcium entry (SOCE), a major mode of extracellular calcium entry, plays roles in a variety of cell activities. Accumulating evidence indicates that the intracellular calcium ion concentration and calcium signaling are critical for the responses induced by oxidative stress. The present study was designed to investigate the potential effect of SOCE inhibition on $H_2O_2$-induced apoptosis in endothelial progenitor cells (EPCs), which are the predominant cells involved in endothelial repair. The results showed that $H_2O_2$-induced EPC apoptosis was reversed by SOCE inhibition induced either using the SOCE antagonist ML-9 or via silencing of stromal interaction molecule 1 (STIM1), a component of SOCE. Furthermore, SOCE inhibition repressed the increases in intracellular reactive oxygen species (ROS) levels and endoplasmic reticulum (ER) stress and ameliorated the mitochondrial dysfunction caused by $H_2O_2$. Our findings provide evidence that SOCE inhibition exerts a protective effect on EPCs in response to oxidative stress induced by $H_2O_2$ and may serve as a potential therapeutic strategy against vascular endothelial injury.

Protective Effects of Ramie (Boehmeria nivea) against Oxidative Stress in C6 Glial Cells

  • Wang, Xiaoning;Cho, Sunghun;Kim, Ho Bang;Jung, Yong-Su;Cho, Eun Ju;Lee, Sanghyun
    • Korean Journal of Plant Resources
    • /
    • v.28 no.6
    • /
    • pp.675-681
    • /
    • 2015
  • β amyloid protein (Aβ) plays a critical role in the pathogenesis of Alzheimer's disease (AD) and possibly in Aβ-induced mitochondrial dysfunction and oxidative stress. Aβ can directly cause reactive oxygen species (ROS) production. Overproduction of ROS is considered to be involved in the pathogenesis of neurodegeneration of AD. Here, we investigated 9 kinds of ramie (Boehmeria nivea, (L.) Gaud., BN; hereafter denoted as BN) for their protective action against oxidative stress in a cellular system using C6 glial cells. We observed loss of cell viability and high levels of ROS generation after treatment with hydrogen peroxide (H2O2) and Aβ25-35. However, treatments with BN extracts led to an increase in cell viability and decrease in ROS production induced by H2O2 and Aβ25-35. In particular, the extracts of BN-01 (seobang variety from Seocheon) and BN-09 (local variety from Yeonggwang) showed excellent anti-oxidative properties. This indicates that BN extracts could prevent neurodegeneration by reducing oxidative stress in cells.

Function of NADPH Oxidases in Diabetic Nephropathy and Development of Nox Inhibitors

  • Lee, Sae Rom;An, Eun Jung;Kim, Jaesang;Bae, Yun Soo
    • Biomolecules & Therapeutics
    • /
    • v.28 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • Several recent studies have reported that reactive oxygen species (ROS), superoxide anion and hydrogen peroxide (H2O2), play important roles in various cellular signaling networks. NADPH oxidase (Nox) isozymes have been shown to mediate receptor-mediated ROS generation for physiological signaling processes involved in cell growth, differentiation, apoptosis, and fibrosis. Detectable intracellular levels of ROS can be induced by the electron leakage from mitochondrial respiratory chain as well as by activation of cytochrome p450, glucose oxidase and xanthine oxidase, leading to oxidative stress. The up-regulation and the hyper-activation of NADPH oxidases (Nox) also likely contribute to oxidative stress in pathophysiologic stages. Elevation of the renal ROS level through hyperglycemia-mediated Nox activation results in the oxidative stress which induces a damage to kidney tissues, causing to diabetic nephropathy (DN). Nox inhibitors are currently being developed as the therapeutics of DN. In this review, we summarize Nox-mediated ROS generation and development of Nox inhibitors for therapeutics of DN treatment.

Ascorbic acid extends replicative life span of human embryonic fibroblast by reducing DNA and mitochondrial damages

  • Hwang, Won-Sang;Park, Seong-Hoon;Kim, Hyun-Seok;Kang, Hong-Jun;Kim, Min-Ju;Oh, Soo-Jin;Park, Jae-Bong;Kim, Jae-Bong;Kim, Sung-Chan;Lee, Jae-Yong
    • Nutrition Research and Practice
    • /
    • v.1 no.2
    • /
    • pp.105-112
    • /
    • 2007
  • Ascorbic acid has been reported to extend replicative life span of human embryonic fibroblast (HEF). Since the detailed molecular mechanism of this phenomenon has not been investigated, we attempted to elucidate. Continuous treatment of HEF cells with ascorbic acid at ($200{\mu}M$) from 40 population doubling (PD) increased maximum PD numbers by 18% and lowered $SA-{\beta}-gal$ positive staining, an aging marker, by 2.3 folds, indicating that ascorbic acid extends replicative life span of HEF cells. Ascorbic acid treatment lowered DCFH by about 7 folds and Rho123 by about 70%, suggesting that ascorbic acid dramatically decreased ROS formation. Ascorbic acid also increased aconitase activity, a marker of mitochondrial aging, by 41%, indicating that ascorbic acid treatment restores age-related decline of mitochondrial function. Cell cycle analysis by flow cytometry revealed that ascorbic acid treatment decreased G1 population up to 12%. Further western blot analysis showed that ascorbic acid treatment decreased levels of p53, phospho-p53 at ser 15, and p21, indicating that ascorbic acid relieved senescence-related G1 arrest. Analysis of AP (apurinic/apyrimidinic) sites showed that ascorbic acid treatment decreased AP site formation by 35%. We also tested the effect of hydrogen peroxide treatment, as an additional oxidative stress. Continuous treatment of $20{\mu}M$ of hydrogen peroxide from PD 40 of HEF cells resulted in premature senescence due to increased ROS level, and increased AP sites. Taken together, the results suggest that ascorbic acid extends replicative life span of HEF cells by reducing mitochondrial and DNA damages through lowering cellular ROS.

Biochemical Aspect of Superoxide Toxicity to Plant Mitochondria (식물 미토콘드리아에 대한 Superoxide독성의 생화학적 측면)

  • Jung, Jin;In, Man-Jin
    • Applied Biological Chemistry
    • /
    • v.32 no.1
    • /
    • pp.23-29
    • /
    • 1989
  • Biochemical consequence of the accumulation in cells of superoxide $(O^{-}_{2})$ which was proposed to be probably a common chemical factor in the secondary process of the mechanism of chilling injury as well as in the visible light photodamage in cells of higher plants, has been investigated in the present work. Especially focused was the destructive effect of $O^{-}_{2}$ on the biochemical activity of mitochondria, as informations which support the suggestion that mitochondrial inner membrane is the major site of $O^{-}_{2}$ production have been collected. Mitochondria and submitochondrial particles (SMP) were prepared from soybean hypocotyls for this case study. When SMP were treated with the electrolytically produced $O^{-}_{2}$ they suffered not only inhibition of the membrane-bound enzymes as demonstrated by cytochrome c oxidase, but also lipid peroxidation of membrane as proved by malondialdehyde production. Malate dehydrogenase present in the protein extract from mitochondrial matrix was also inhibited by the $O^{-}_{2}$ treatment. These results exhibited the chaotic effect of the overproduction and accumulation of $O^{-}_{2}$ in cells under a certain abnormal circumstance such as environmental stress on the physiological function of mitochondrial; disruption of the cellular metabolic pathways and the structural integrity of membrane.

  • PDF

Gynostemma pentaphyllum extract and Gypenoside L enhance skeletal muscle differentiation and mitochondrial metabolism by activating the PGC-1α pathway in C2C12 myotubes

  • Kim, Yoon Hee;Jung, Jae In;Jeon, Young Eun;Kim, So Mi;Oh, Tae Kyu;Lee, Jaesun;Moon, Joo Myung;Kim, Tae Young;Kim, Eun Ji
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.14-32
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Peroxisome proliferator-activated receptor-gamma co-activator-1α (PGC-1α) has a central role in regulating muscle differentiation and mitochondrial metabolism. PGC-1α stimulates muscle growth and muscle fiber remodeling, concomitantly regulating lactate and lipid metabolism and promoting oxidative metabolism. Gynostemma pentaphyllum (Thumb.) has been widely employed as a traditional herbal medicine and possesses antioxidant, anti-obesity, anti-inflammatory, hypolipemic, hypoglycemic, and anticancer properties. We investigated whether G. pentaphyllum extract (GPE) and its active compound, gypenoside L (GL), affect muscle differentiation and mitochondrial metabolism via activation of the PGC-1α pathway in murine C2C12 myoblast cells. MATERIALS/METHODS: C2C12 cells were treated with GPE and GL, and quantitative reverse transcription polymerase chain reaction and western blot were used to analyze the mRNA and protein expression levels. Myh1 was determined using immunocytochemistry. Mitochondrial reactive oxygen species generation was measured using the 2'7'-dichlorofluorescein diacetate assay. RESULTS: GPE and GL promoted the differentiation of myoblasts into myotubes and elevated mRNA and protein expression levels of Myh1 (type IIx). GPE and GL also significantly increased the mRNA expression levels of the PGC-1α gene (Ppargc1a), lactate metabolism-regulatory genes (Esrra and Mct1), adipocyte-browning gene fibronectin type III domain-containing 5 gene (Fndc5), glycogen synthase gene (Gys), and lipid metabolism gene carnitine palmitoyltransferase 1b gene (Cpt1b). Moreover, GPE and GL induced the phosphorylation of AMP-activated protein kinase, p38, sirtuin1, and deacetylated PGC-1α. We also observed that treatment with GPE and GL significantly stimulated the expression of genes associated with the anti-oxidative stress response, such as Ucp2, Ucp3, Nrf2, and Sod2. CONCLUSIONS: The results indicated that GPE and GL enhance exercise performance by promoting myotube differentiation and mitochondrial metabolism through the upregulation of PGC-1α in C2C12 skeletal muscle.

Gleditsia Spina Extract Protects Hepatocytes from Oxidative Stress through Nrf2 Activation (皂角刺 추출물의 Nrf2 활성화를 통한 간세포 보호 효과)

  • Kim, Jae Kwang;Park, Sang Mi;Jegal, Kyung Hwan;Kim, Young Woo;Byun, Sung Hui;Kim, Sang Chan;Cho, Il Je
    • The Korea Journal of Herbology
    • /
    • v.30 no.4
    • /
    • pp.57-64
    • /
    • 2015
  • Objectives : Oxidative stress is one of the most causes of hepatocyte injury. Gleditsia spina, the thorns ofGleditsia sinensisLam., has been known for its anti-cancer and anti-inflammatory effects in Korean medicine. The present study investigated hepatoprotective effect of Gleditsia spina water extract (GSE) against oxidative stress induced by arachidonic acid (AA) + iron in HepG2 cells.Methods : To investigate cytoprotective effect of GSE, cells were pretreated with GSE and then subsequently exposed to 10 μM AA for 12 h, followed by 5 μM iron. Cell viability was monitored by MTT assay, and expression of apoptosis-related proteins was examined by immunoblot analysis. To identify responsible molecular mechanisms, reactive oxygen species (ROS) production, GSH contents, and mitochondrial membrane potential were measured. In addition, effect of GSE on nuclear factor erythroid 2-related factor 2 (Nrf2) activation was determined by immunoblot and antioxidant response element (ARE)-driven reporter gene assays.Results : GSE pretreatment prevented AA + iron-mediated cytotoxicity in concentration dependent manner. In addition, ROS production, glutathione depletion, and mitochondrial impairment by AA + iron were significantly inhibited by GSE. Furthermore, GSE promoted translocation of Nrf2 to nucleus, which acts as essential transcription factor for induction of antioxidant genes. Increased nuclear Nrf2 that caused by GSE treatment promoted transcriptional activity of ARE. Finally, GSE up-regulated sestrin-2 which was widely recognized as target gene of Nrf2.Conclusions : This study demonstrates that GSE protects hepatocytes from oxidative stress via activation of Nrf2 signaling pathway.

Mitochondria protection of Sparganii Rhizoma against oxidative stress in heptocytes (삼릉(三稜) 추출물의 간세포 보호 및 미토콘드리아 보호 효과)

  • Seo, Hye-Lim;Lee, Ju-Hee;Jang, Mi-Hee;Kwon, Young-Won;Cho, Il-Je;Kim, Kwang-Joong;Park, Sook-Jahr;Kim, Sang-Chan;Kim, Young-Woo;Byun, Sung-Hui
    • Herbal Formula Science
    • /
    • v.23 no.2
    • /
    • pp.189-198
    • /
    • 2015
  • Objectives : Sparganii Rhizoma is frequently used in traditional herbal medicine for treatment of blood stasis, amenorrhea and functional dyspepsia and has been reported to exhibit anti-oxidant, anti-proliferation and anti-angiogenesis peoperties. In this study, we investigated the cytoprotective effect and underlying mechanism of Sparganii Rhizoma water extract (SRE) against oxidative stress-induced mitochondrial dysfunction and apoptosis in hepatocyte. Methods : To determine the effects of SRE on oxidative stress, we induced synergistic cytotoxicity by co-treatment of arachidonic acid (AA) and iron in the HepG2 cell, a human derived hepatocyte cell line. Results : Treatment of SRE increased relative cell viability and altered the expression levels of apoptosis-related proteins such as Bcl-xL, Bcl-2 and procaspase-3. And SRE also inhibited the mitochondrial dysfunction and excessive reactive oxygen species production induced by AA+iron. In addition, SRE activated of AMP-activated protein kinase (AMPK), a potential target for cytoprotection, by increasing the phosphorylation of AMPKα at Thr-172. Morever, SRE increased phosphorylation of acetyl-CoA carboxylase, a direct downstream target of AMPK. Conclusion : These results indicated that SRE has the ability to protect against oxidative stress-induced hepatocyte damage, which may be mediated with AMPK pathway.