• Title/Summary/Keyword: Mitochondrial disease

Search Result 321, Processing Time 0.034 seconds

Novel non-apoptotic cell death: ferroptosis (새로운 non-apoptotic 세포사멸: ferroptosis)

  • Woo, Seon Min;Kwon, Taeg Kyu
    • Journal of Yeungnam Medical Science
    • /
    • v.34 no.2
    • /
    • pp.174-181
    • /
    • 2017
  • Ferroptosis is a newly recognized type of cell death that results from iron-dependent lipid peroxidation and is different from other types of cell death, such as apoptosis, necrosis, and autophagic cell death. This type of cell death is characterized by mitochondrial shrinkage with an increased mitochondrial membrane density and outer mitochondrial membrane rupture. Ferroptosis can be induced by a loss of activity of system $X_c{^-}$ and the inhibition of glutathione peroxidase 4, followed by the accumulation of lipid reactive oxygen species (ROS). In addition, inactivation of the mevalonate and transsulfuration pathways is involved in the induction of ferroptosis. Moreover, nicotinamide adenine dinucleotide phosphate oxidase and p53 promote ferroptosis by increasing ROS production, while heat shock protein beta-1 and nuclear factor erythroid 2-related factor 2 inhibit ferroptosis by reducing iron uptake. This article outlines the molecular mechanisms and signaling pathways of ferroptosis regulation, and explains the roles of ferroptosis in human disease.

A Case Report of MELAS Syndrom (MELAS Syndrome 환아(患兒) 1예(例)에 대한 고찰(考察))

  • Jeong Hwan-Su;Lee Jin-Yong;Kim Deok-Gon
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.13 no.2
    • /
    • pp.225-235
    • /
    • 1999
  • MELAS is the condition associated with mutant mtDNA that most closely mimics thrombotic cerebrovascular disease. Characteristic abnormalities are two. first, 'ragged-red fibers' in muscle biopsy. second, point mutation in the mitochondrial DNA analyses. The characteristic clinical presentations of MELAS are short stature, recurrent stroke like episodes, migraine-like headache, sensorineural hearng loss, glucose intolerance and neuropathy. We now report a case of MELAS syndrome having mitochondrial DNA mutation with an A to G transition at the 3,243rd position diagnosed in Chung-ang Hospital.

  • PDF

The Interface Between ER and Mitochondria: Molecular Compositions and Functions

  • Lee, Soyeon;Min, Kyung-Tai
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1000-1007
    • /
    • 2018
  • Mitochondria and endoplasmic reticulum (ER) are essential organelles in eukaryotic cells, which play key roles in various biological pathways. Mitochondria are responsible for ATP production, maintenance of $Ca^{2+}$ homeostasis and regulation of apoptosis, while ER is involved in protein folding, lipid metabolism as well as $Ca^{2+}$ homeostasis. These organelles have their own functions, but they also communicate via mitochondrial-associated ER membrane (MAM) to provide another level of regulations in energy production, lipid process, $Ca^{2+}$ buffering, and apoptosis. Hence, defects in MAM alter cell survival and death. Here, we review components forming the molecular junctions of MAM and how MAM regulates cellular functions. Furthermore, we discuss the effects of impaired ER-mitochondrial communication in various neurodegenerative diseases.

Two Cases of MELAS Syndrome Manifesting Variable Clinical Cour (다양한 임상경과를 보인 멜라스(MELAS, mitochondrial encephalopathy, lactic acidosis, and stroke-like episode) 증후군 2례)

  • Choi, Seo Yeol;Lee, Seung-Ho;Myung, Na-Hye;Lee, Young-Seok;Yu, Jeesuk
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.16 no.2
    • /
    • pp.102-108
    • /
    • 2016
  • Mitochondrial encephalopathy, lactic acidosis, and stroke-like episode (MELAS) syndrome is one of mitochondrial encephalopathy. As the early clinical manifestations can be variable, it is important to suspect the disease, especially in patients with multiple organ dysfunctions. A boy was diagnosed with epilepsy when he was 9 years old. Two years later, severe headache and blurred vision developed suddenly. On examination, left homonymous hemianopsia was detected with corresponding cerebral parenchymal lesions in right temporo-occipito-parietal areas. MELAS syndrome was confirmed by genetic test, which showed m.3243 A>G mitochondrial DNA mutation. Multivitamins including coenzyme Q10 were added to anticonvulsant. He experienced 4 more events of stroke-like episodes over 5 years, but he is able to perform normal daily activities. A 13-year-old boy was brought to the hospital due to suddenly developed respiratory arrest and asystole associated with pneumonia. Past medical history revealed that he had multiple medical problems such as epilepsy, failure-to-thrive, optic atrophy, and deafness. He has been on valproic acid as an anticonvulsant which was prescribed from local clinic. He recovered after the resuscitation, but his cognition and motor function were severely damaged. He became bed-ridden. He was diagnosed with MELAS syndrome by brain MRI, muscle biopsy, and clinical features. Genetic test did not reveal any mitochondrial gene mutation. Four years later, he expired due to suddenly developed severe metabolic acidosis combined with hyperglycemic hyperosmolar nonketotic coma. The clinical features of MELAS syndrome are variable. Early diagnosis before the presentation to the grave clinical course may be important for the better clinical outcome.

  • PDF

Plasma Amino Acid and Urine Organic Acid Analyses in Leigh Syndrome (리증후군에서의 혈장 아미노산 및 소변 유기산 분석)

  • Na, Ji-Hoon;Lee, Hyunjoo;Lee, Hae-in;Huh, Euira;Lee, Young-Mock
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.22 no.1
    • /
    • pp.28-36
    • /
    • 2022
  • Purpose: Detection of abnormal metabolites in plasma amino acid (PAA) and urine organic acid (UOA) analyses has been used to diagnose clinical mitochondrial diseases, such as Leigh syndrome. In this study, the diagnostic values and effectiveness of PAA and UOA analyses were reviewed. Methods: This was a retrospective study of patients with Leigh syndrome who were diagnosed between 2003 and 2018 in a single tertiary care center. Through a whole mitochondrial sequencing and nuclear DNA associated mitochondrial gene panel analysis, 19 patients were found to be positive for mitochondrial DNA (mtDNA) mutation-associated Leigh syndrome, and 57 patients were negative. Their PAA and UOA analyses results were then compared. Results: In the comparison of the PAA and UOA analyses results between the two groups, no abnormal metabolites showed obvious differences between the mtDNA mutation-positive Leigh syndrome and mtDNA mutation-negative Leigh syndrome groups. Conclusion: PAA and UOA analyses are inappropriate test methods for diagnosing Leigh syndrome or screening of mtDNA mutation-associated Leigh syndrome. However, UOA analysis might still be a suitable screening test for Leigh syndrome.

Cardioprotection via mitochondrial transplantation supports fatty acid metabolism in ischemia-reperfusion injured rat heart

  • Jehee Jang;Ki-Woon Kang;Young-Won Kim;Seohyun Jeong;Jaeyoon Park;Jihoon Park;Jisung Moon;Junghyun Jang;Seohyeon Kim;Sunghun Kim;Sungjoo Cho;Yurim Lee;Hyoung Kyu Kim;Jin Han;Eun-A Ko;Sung-Cherl Jung;Jung-Ha Kim;Jae-Hong Ko
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.209-217
    • /
    • 2024
  • In addition to cellular damage, ischemia-reperfusion (IR) injury induces substantial damage to the mitochondria and endoplasmic reticulum. In this study, we sought to determine whether impaired mitochondrial function owing to IR could be restored by transplanting mitochondria into the heart under ex vivo IR states. Additionally, we aimed to provide preliminary results to inform therapeutic options for ischemic heart disease (IHD). Healthy mitochondria isolated from autologous gluteus maximus muscle were transplanted into the hearts of Sprague-Dawley rats damaged by IR using the Langendorff system, and the heart rate and oxygen consumption capacity of the mitochondria were measured to confirm whether heart function was restored. In addition, relative expression levels were measured to identify the genes related to IR injury. Mitochondrial oxygen consumption capacity was found to be lower in the IR group than in the group that underwent mitochondrial transplantation after IR injury (p < 0.05), and the control group showed a tendency toward increased oxygen consumption capacity compared with the IR group. Among the genes related to fatty acid metabolism, Cpt1b (p < 0.05) and Fads1 (p < 0.01) showed significant expression in the following order: IR group, IR + transplantation group, and control group. These results suggest that mitochondrial transplantation protects the heart from IR damage and may be feasible as a therapeutic option for IHD.

Integrative analysis of microRNA-mediated mitochondrial dysfunction in hippocampal neural progenitor cell death in relation with Alzheimer's disease

  • A Reum Han;Tae Kwon Moon;Im Kyeung Kang;Dae Bong Yu;Yechan Kim;Cheolhwan Byon;Sujeong Park;Hae Lin Kim;Kyoung Jin Lee;Heuiran Lee;Ha-Na Woo;Seong Who Kim
    • BMB Reports
    • /
    • v.57 no.6
    • /
    • pp.281-286
    • /
    • 2024
  • Adult hippocampal neurogenesis plays a pivotal role in maintaining cognitive brain function. However, this process diminishes with age, particularly in patients with neurodegenerative disorders. While small, non-coding microRNAs (miRNAs) are crucial for hippocampal neural stem (HCN) cell maintenance, their involvement in neurodegenerative disorders remains unclear. This study aimed to elucidate the mechanisms through which miRNAs regulate HCN cell death and their potential involvement in neurodegenerative disorders. We performed a comprehensive microarray-based analysis to investigate changes in miRNA expression in insulin-deprived HCN cells as an in vitro model for cognitive impairment. miR-150-3p, miR-323-5p, and miR-370-3p, which increased significantly over time following insulin withdrawal, induced pronounced mitochondrial fission and dysfunction, ultimately leading to HCN cell death. These miRNAs collectively targeted the mitochondrial fusion protein OPA1, with miR-150-3p also targeting MFN2. Data-driven analyses of the hippocampi and brains of human subjects revealed significant reductions in OPA1 and MFN2 in patients with Alzheimer's disease (AD). Our results indicate that miR-150-3p, miR-323-5p, and miR-370-3p contribute to deficits in hippocampal neurogenesis by modulating mitochondrial dynamics. Our findings provide novel insight into the intricate connections between miRNA and mitochondrial dynamics, shedding light on their potential involvement in conditions characterized by deficits in hippocampal neurogenesis, such as AD.

Effect of Cigarette Smoke Exposure Against Oxidative Damage in Scrapie-infected Mice

  • Sohn, Hyung-Ok;Moon, Ja-Young;Lim, Heung-Bin;Lee, Dong-Wook
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.31 no.1
    • /
    • pp.29-38
    • /
    • 2009
  • Although prion diseases, a group of fatal neurodegenerative diseases of human and animals, are presumed to be caused by several mechanisms including abnormal change of prion protein, oxidative stress is still believed to play a central role in development of the diseases. Cigarette smoking has a few beneficial effects on neuronal diseases such as Alzheimer's disease and Parkinson's disease despite of many detrimental effects. In this study, we investigated how chronic cigarette smoking could exert such beneficial effect against oxidative damage. For this study, homogenates of 87V scrapie-infected brain was inoculated on intracerebral system of IM mice through stereotaxic microinjection and biochemical properties concerning with oxidative stress were examined. The scrapie infection decreased the activity of mitochondrial Mn-containing superoxide dismutase by 50% of the control, meanwhile the effects on other antioxidant enzymes including Cu or Zn-containing superoxide dismutase were not significant. Additionally, the infection elevated superoxide level as well as monoamine oxide-B (MAO-B) in the infected brain. Interestingly, many of the detrimental effects were improved in partial or significantly by long-term cigarette smoke exposure (CSE). CSE not only completely prevented the generation of mitochondrial superoxide but also significantly (p<0.05) decreased the elevated mitochondrial MAO-B activity in the infected brain. Concomitantly, CSE prevented subsequent protein oxidation and lipid peroxidation caused by scrapie infection; however, it did not affect the activities of antioxidant enzymes. These results suggest that chronic exposure of cigarette smoke contribute to in part preventing the progress of neurodegeneration caused by scrapie infection.

Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson's disease

  • Park, Ga Hyun;Park, Joon Hyung;Chung, Kwang Chul
    • BMB Reports
    • /
    • v.54 no.12
    • /
    • pp.592-600
    • /
    • 2021
  • Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the elderly population and is caused by the loss of dopaminergic neurons. PD has been predominantly attributed to mitochondrial dysfunction. The structural alteration of α-synuclein triggers toxic oligomer formation in the neurons, which greatly contributes to PD. In this article, we discuss the role of several familial PD-related proteins, such as α-synuclein, DJ-1, LRRK2, PINK1, and parkin in mitophagy, which entails a selective degradation of mitochondria via autophagy. Defective changes in mitochondrial dynamics and their biochemical and functional interaction induce the formation of toxic α-synuclein-containing protein aggregates in PD. In addition, these gene products play an essential role in ubiquitin proteasome system (UPS)-mediated proteolysis as well as mitophagy. Interestingly, a few deubiquitinating enzymes (DUBs) additionally modulate these two pathways negatively or positively. Based on these findings, we summarize the close relationship between several DUBs and the precise modulation of mitophagy. For example, the USP8, USP10, and USP15, among many DUBs are reported to specifically regulate the K48- or K63-linked de-ubiquitination reactions of several target proteins associated with the mitophagic process, in turn upregulating the mitophagy and protecting neuronal cells from α-synuclein-derived toxicity. In contrast, USP30 inhibits mitophagy by opposing parkin-mediated ubiquitination of target proteins. Furthermore, the association between these changes and PD pathogenesis will be discussed. Taken together, although the functional roles of several PD-related genes have yet to be fully understood, they are substantially associated with mitochondrial quality control as well as UPS. Therefore, a better understanding of their relationship provides valuable therapeutic clues for appropriate management strategies.

Mitochondrial energy metabolic transcriptome profiles during cardiac differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Kim, Yeseul;Kim, Jae Ho;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.357-365
    • /
    • 2022
  • Simultaneous myofibril and mitochondrial development is crucial for the cardiac differentiation of pluripotent stem cells (PSCs). Specifically, mitochondrial energy metabolism (MEM) development in cardiomyocytes is essential for the beating function. Although previous studies have reported that MEM is correlated with cardiac differentiation, the process and timing of MEM regulation for cardiac differentiation remain poorly understood. Here, we performed transcriptome analysis of cells at specific stages of cardiac differentiation from mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs). We selected MEM genes strongly upregulated at cardiac lineage commitment and in a time-dependent manner during cardiac maturation and identified the protein-protein interaction networks. Notably, MEM proteins were found to interact closely with cardiac maturation-related proteins rather than with cardiac lineage commitment-related proteins. Furthermore, MEM proteins were found to primarily interact with cardiac muscle contractile proteins rather than with cardiac transcription factors. We identified several candidate MEM regulatory genes involved in cardiac lineage commitment (Cck, Bdnf, Fabp4, Cebpα, and Cdkn2a in mESC-derived cells, and CCK and NOS3 in hiPSC-derived cells) and cardiac maturation (Ppargc1α, Pgam2, Cox6a2, and Fabp3 in mESC-derived cells, and PGAM2 and SLC25A4 in hiPSC-derived cells). Therefore, our findings show the importance of MEM in cardiac maturation.