• Title/Summary/Keyword: Mitochondrial RNA

Search Result 354, Processing Time 0.032 seconds

Pythium subutonaiense, A New Aquatic Oomycete from Southern China Based on Morphological and Molecular Characters

  • Chen, Jia-Jia;Zheng, Xiao-Bo
    • Mycobiology
    • /
    • v.47 no.3
    • /
    • pp.273-279
    • /
    • 2019
  • A new species, Pythium subutonaiense, isolated from aquatic environments (lake) in China is being described based on morphological characters and molecular evidence. The isolates grew at temperatures between $5^{\circ}C$ and $38^{\circ}C$, and the optimum temperature was $30^{\circ}C$, with a radial growth rate of 17.6 mm at $25^{\circ}C$ per day. It is homothallic and characterized by globose to sub-globose shaped and mostly terminal or sometimes catenulate hyphal swellings, filamentous non-inflated sporangia, and smooth oogonia with hypogynous and monoclinous antheridia that contained one plerotic oospore. In phylogenetic analysis, inferred based on the internal transcribed spacer region of the ribosomal RNA gene and mitochondrial cytochrome c oxidase subunit 1 gene, the new species formed a distinct lineage in Pythium clade B. Differences between the new species and phylogenetically related and morphologically similar species are discussed.

DNA Barcoding for the Hydrothermal Vent Crab Austinograea Species (Crustacea: Bythograeidae) from the North Fiji Basin, Southwestern Pacific Ocean

  • Lee, Won-Kyung;Ju, Se-Jong;Hou, Bo Kyeng;Kim, Se-Joo
    • Animal Systematics, Evolution and Diversity
    • /
    • v.35 no.1
    • /
    • pp.30-32
    • /
    • 2019
  • The brachyuran crab Bythograeidae Williams, 1980 is common in hydrothermal vent fields worldwide and has recorded to sixteen species of six genera. In this study, we firstly determined the cytochrome c oxidase subunit 1 (CO1) DNA barcodes for the fifth species of Austinograea, A. hourdezi, from hydrothermal vent regions of the North Fiji Basin in southwestern Pacific Ocean. All CO1 DNA barcodes of A. hourdezi were identical. The interspecies variations of three bythograeid genera were 10.9-13.3% for Austinograea, 6.6-15.7% for Bythograea, and 9.7% for Gandalfus. These results would be helpful to understand taxonomy of brachyuran crabs living in hydrothermal vent fields using CO1 DNA barcodes.

DNA Barcoding of Koreanohadra kurodana (Gastropoda: Camaenidae)

  • Kang-San Kim;Jun-Sang Lee;Kuem Hee Jang
    • Animal Systematics, Evolution and Diversity
    • /
    • v.40 no.4
    • /
    • pp.354-358
    • /
    • 2024
  • The land snail, Koreanohadra kurodana (Pilsbry, 1926), is endemic to Korea and was collected from Pocheon, Pyeongchang, and Taebaek in South Korea. This study describes the mitochondrial cytochrome c oxidase subunit I gene (COI) and 16S ribosomal RNA(16S) sequences of K. kurodana, followed by an analysis of the genetic distance between the genus Koreanohadra and its congeners. As a result, intra-species variation was 0.2-3.7% in COI and 0.3-4.0% in 16S. In the gene sequences of K. koreana recently reported by Japanese researchers, both COI and 16S sequences were observed to be located within the intra-species variation of K. kurodana (1.5-3.5% in COI; 0.6-4.0% in 16S). The inter-generic variation between genera Karaftohelix and Koreanohadra, closely related, was 11.8-26% and 6.2-18.7% in COI and 16S, respectively.

Development of a Method to Detect Cattle Material from Processed Meat Products Using a Polymerase Chain Reaction (PCR을 이용한 축산물 가공식품 내 소고기 성분 검출법 개발)

  • Kwon, Young Chul;Hah, Do-Yun;Heo, Yunwi;Kim, Tae-Kyu;Choi, Yoo-Jeong;Jo, Dae-Hoon;Nam, Sang-Yun;Son, Byeong-Guk;Hwang, Bo-Won;Yang, Byoung-Seon;Kim, Euikyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.2
    • /
    • pp.135-140
    • /
    • 2017
  • Polymerase chain reaction (PCR) was used to detect cattle material from processed meat products. Seventy-eight different commercial processed meat products were purchased from several big food marts. Among them, 17 products contained cattle material (10 samples contained only cattle, 5 samples mixed with cattle and porcine, 2 samples mixed with cattle, porcine and chicken). The genomic DNA was extracted directly from the processed meat products, and strain-specific primer targeting the 16S ribosomal RNA mitochondrial gene was used. All PCR products were cloned into the pGEM-T easy vector and sequenced. Consequently, the PCR products were amplified from 10 processed meat products, which contained only cattle material in our conditions. Furthermore, PCR reactions showed the same results at mixed samples. The DNA sequence obtained from pGEM-T easy/PCR products showed more than 95% identity with Bos taurus 16S rRNA gene using homology analysis. In conclusion, we suggest that the method using PCR, as performed in this study, could be useful in detecting cattle material in processed meat products. Moreover, our system could be applicable in inspection procedures to improve the verification of correct labeling for import and export processed meat products.

Molecular Characterization and Expression Analysis of Peroxiredoxin 2 cDNA from Abalone (Haliotis discus hannai) (참전복(Haliotis discus hannai)에서 분리한 peroxiredoxin 2 유전자의 분자생물학적 고찰 및 발현분석)

  • Moon, Ji Young;Park, Eun Hee;Kong, Hee Jeong;Kim, Young-Ok;Kim, Dong-Gyun;An, Cheul Min;Nam, Bo-Hye
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1291-1300
    • /
    • 2014
  • Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant enzymes that participate in a variety of biological processes, including $H_2O_2$-mediated signal transduction, molecular chaperoning, and mitochondrial function. In this study, we isolated and characterized a Prx 2 cDNA from abalone (Haliotis discus hannai). The abalone Prx 2 cDNA encoded a 199-amino acid polypeptide that belongs to a class of typical 2-Cys Prxs that contain peroxidatic and resolving cysteines. The deduced abalone Prx 2 protein showed strong homology (64-99%) with Prx 2 proteins from other species, including mollusk, fish, amphibians, and mammals, and it was most closely related to disk abalone (H. discus discus) Prx 2. Abalone Prx 2 mRNA was ubiquitously detected in tested tissues, and its expression was comparatively high in the mantle, gills, liver, foot, and digestive duct. The expression level of abalone Prx 2 mRNA was 106.7-fold, 51.9-fold, and 437.8-fold higher, respectively, in the gills, digestive duct, and liver than in the muscles. The expression level of abalone Prx 2 mRNA in the liver peaked at 6 hr postinfection with Vibrio parahemolyticus and decreased at 12 hr postinfection. The expression level of abalone Prx 2 mRNA in hemocytes was drastically increased at 1 hr postinfection with V. parahemolyticus. These results suggest that abalone Prx 2 is conserved through evolution and that it may play a role similar to that of its mammalian counterpart.

Intron sequence diversity of the asian cavity-nesting honey bee, Apis cerana (Hymenoptera: Apidae)

  • Wang, Ah Rha;Jeong, Su Yeon;Jeong, Jun Seong;Kim, Seong Ryul;Choi, Yong Soo;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.31 no.2
    • /
    • pp.62-69
    • /
    • 2015
  • The Asian cavity-nesting honeybee, Apis cerana (Hymenoptera: Apidae), has been extensively studied for its biogeography and genetic diversity, but the molecules utilized in past studies were mainly ~90 bp long mitochondrial non-coding sequences, located between $tRNA^{Leu}$ and COII. Thus, additional molecular markers may enrich our understanding of the biogeography and genetic diversity of this valuable bee species. In this study, we reviewed the public genome database to find introns of cDNA sequences, with the assumption that these introns may have less evolutionary constraints. The six introns selected were subjected to preliminary tests. Thereafter, two introns, titled White gene and MRJP9 gene, were selected. Sequencing of 552 clones from 184 individual bees showed a total of 222 and 141 sequence types in the White gene and MRJP9 gene introns, respectively. The sequence divergence ranged from 0.6% to 7.9% and from 0.26% to 17.6% in the White gene and the MRJP9 introns, respectively, indicating higher sequence divergence in both introns. Analysis of population genetic diversity for 16 populations originating from Korea, China, Vietnam, and Thailand shows that nucleotide diversity (π) ranges from 0.003117 to 0.025837 and from 0.016541 to 0.052468 in the White gene and MRJP9 introns, respectively. The highest π was found in a Vietnamese population for both intron sequences, whereas the nine Korean populations showed moderate to low sequence divergence. Considering the variability and diversity, these intron sequences can be useful as non-mitochondrial DNA-based molecular markers for future studies of population genetics.

Anti-Diabetic Effects of Dung Beetle Glycosaminoglycan on db Mice and Gene Expression Profiling

  • Ahn, Mi Young;Kim, Ban Ji;Yoon, Hyung Joo;Hwang, Jae Sam;Park, Kun-Koo
    • Toxicological Research
    • /
    • v.34 no.2
    • /
    • pp.151-162
    • /
    • 2018
  • Anti-diabetes activity of Catharsius molossus (Ca, a type of dung beetle) glycosaminoglycan (G) was evaluated to reduce glucose, creatinine kinase, triglyceride and free fatty acid levels in db mice. Diabetic mice in six groups were administrated intraperitoneally: Db heterozygous (Normal), Db homozygous (CON), Heuchys sanguinea glycosaminoglycan (HEG, 5 mg/kg), dung beetle glycosaminoglycan (CaG, 5 mg/kg), bumblebee (Bombus ignitus) queen glycosaminoglycan (IQG, 5 mg/kg) and metformin (10 mg/kg), for 1 month. Biochemical analyses in the serum were evaluated to determine their anti-diabetic and anti-inflammatory actions in db mice after 1 month treatment with HEG, CaG or IQG treatments. Blood glucose level was decreased by treatment with CaG. CaG produced significant anti-diabetic actions by inhiting creatinine kinase and alkaline phosphatase levels. As diabetic parameters, serum glucose level, total cholesterol and triglyceride were significantly decreased in CaG5-treated group compared to the controls. Dung beetle glycosaminoglycan, compared to the control, could be a potential therapeutic agent with anti-diabetic activity in diabetic mice. CaG5-treated group, compared to the control, showed the up-regulation of 48 genes including mitochondrial yen coded tRNA lysine (mt-TK), cytochrome P450, family 8/2, subfamily b, polypeptide 1 (Cyp8b1), and down-regulation of 79 genes including S100 calcium binding protein A9 (S100a9) and immunoglobulin kappa chain complex (Igk), and 3-hydroxy-3-methylglutaryl-CoenzymeAsynthase1 (Hmgcs1). Moreover, mitochondrial thymidine kinase (mt-TK), was up-regulated, and calgranulin A (S100a9) were down-regulated by CaG5 treatment, indicating a potential therapeutic use for anti-diabetic agent.

The Novel Biological Action of Antimicrobial Peptides via Apoptosis Induction

  • Cho, Jaeyong;Hwang, In-Sok;Choi, Hyemin;Hwang, Ji Hong;Hwang, Jae-Sam;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1457-1466
    • /
    • 2012
  • Antimicrobial peptides (AMPs) exert antimicrobial activity against Gram-positive and Gram-negative bacteria, fungi, and viruses by various mechanisms. AMPs commonly possess particular characteristics by harboring cationic and amphipathic structures and binding to cell membranes, resulting in the leakage of essential cell contents by forming pores or disturbing lipid organization. These membrane disruptive mechanisms of AMPs are possible to explain according to the various structure forming pores in the membrane. Some AMPs inhibit DNA and/or RNA synthesis as well as apoptosis induction by reactive oxygen species (ROS) accumulation and mitochondrial dysfunction. Specifically, mitochondria play a major role in the apoptotic pathway. During apoptosis induced by AMPs, cells undergo cytochrome c release, caspase activation, phosphatidylserine externalization, plasma or mitochondrial membrane depolarization, DNA and nuclei damage, cell shrinkage, apoptotic body formation, and membrane blebbing. Even AMPs, which have been reported to exert membrane-active mechanisms, induce apoptosis in yeast. These phenomena were also discovered in tumor cells treated with AMPs. The apoptosis mechanism of AMPs is available for various therapeutics such as antibiotics for antibiotic-resistant pathogens that resist to the membrane active mechanism, and antitumor agents with selectivity to tumor cells.

Validation of Morphology-based Identification of Two Cynoglossidae Larvae using Mitochondrial DNA (참서대과(Pisces: Cynoglossidae) 자어 2종의 미토콘드리아 DNA에 의한 형태동정의 타당성)

  • Kwun, Hyuck-Joon;Kim, Jin-Koo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.5
    • /
    • pp.482-488
    • /
    • 2010
  • Three specimens of Cynoglossidae larvae were collected from the southern Korean Sea in May and August of 2009, and were identified using morphological and molecular analysis. Specimens were divided into two groups based on the number of elongated dorsal fin rays on the top of the head: Cynoglossidae sp. A was defined as having two elongated dorsal fin rays, while Cynoglossidae sp. B possessed a single elongated dorsal fin ray. One specimen of Cynoglossidae sp. A, a post-larva with a notochord length (NL) of 5.8 mm was thought to be a Cynoglossus joyneri larva based on the presence of 115 dorsal pterogiophores, 85 anal pterogiophores, and 50 myomeres. Two specimens of Cynoglossidae sp. B, a 4.1 mm NL larva and a 11.3 mm NL juvenile, were thought to be Cynoglossus abbreviatus based on the presence of yolk in the former and 133 dorsal fin rays, 105 anal fin rays, and 63 myomeres in the latter. To test this morphology-based identification, molecular analysis was conducted using 419-422 bp of mitochondrial DNA 16S rRNA. Cynoglossidae sp. A was clearly matched to a Cynoglossus joyneri adult (d=0.000) and Cynoglossidae sp. B clustered closely with Cynoglossus abbreviatus adults (d=0.002). A neighbor-joining tree supported this robust relationship (bootstrap value=100%). Therefore, these molecular data validate the morphological identification of the two Cynoglossidae larval species.

Relationship between the nucleolar cycle and chromatoid body formation in the spermatogenesis of $Phrynops$ $geoffroanus$ (Reptilia Testudines)

  • Peruquetti, Rita L.;Taboga, Sebastiao R.;Cabral, Silvia R.;De Oliveira, Classius;Azeredo-Oliveira, Maria T.
    • Animal cells and systems
    • /
    • v.16 no.2
    • /
    • pp.104-113
    • /
    • 2012
  • The nucleolus is a distinct nuclear territory involved in the compartmentalization of nuclear functions. There is some evidence of a relationship between nuclear fragmentation during spermatogenesis and chromatoid body (CB) formation. The CB is a typical cytoplasmic organelle of haploid germ cells, and is involved in RNA and protein accumulation for later germ-cell differentiation. The goal of this study was to qualitatively and quantitatively describe the nucleolar cycle during the spermatogenesis of $Phrynops$ $geoffroanus$ (Reptilia Testudines), and compare this nucleolar fragmentation with CB formation in this species through the use of cytochemical and ultrastructural analysis. Qualitative analysis showed a fragmentation of the nuclear material after pachytene of the first meiotic division in the primary spermatocytes. Quantitative analysis of the nucleolar cycle revealed a significant difference in the number of nucleoli and in the size of the nucleolus between spermatogonia and early spermatids. Using ultrastructural analysis, we recorded the beginning of the CB formation process in the cytoplasm of primary spermatocytes at the same time as when nuclear fragmentation occurs. In the cytoplasm of primary spermatocytes, the CB was observed in association with mitochondrial aggregates and the Golgi complex. In the cytoplasm of early spermatids, the CB was observed in association with lipid droplets. In conclusion, our data show that the nucleolus plays a role in the CB formation process. During spermatogenesis of $P.$ $geoffroanus$, the CB is involved in some important biological processes, including acrosome formation and mitochondrial migration to the spermatozoon tail and middle piece region.