• Title/Summary/Keyword: Mitochondrial Protein

Search Result 589, Processing Time 0.035 seconds

Bioinformatics Analysis of Autophagy and Mitophagy Markers Associated with Delayed Cerebral Ischemia Following Subarachnoid Hemorrhage

  • Youn, Dong Hyuk;Kim, Bong Jun;Hong, Eun Pyo;Jeon, Jin Pyeong
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.2
    • /
    • pp.236-244
    • /
    • 2022
  • Objective : To evaluate the interactions among differentially expressed autophagy and mitophagy markers in subarachnoid hemorrhage (SAH) patients with delayed cerebral ischemia (DCI). Methods : The expression data of autophagy and mitophagy-related makers in the cerebrospinal fluid (CSF) cells was analyzed by real-time reverse transcription-polymerase chain reaction and Western blotting. The markers included death-associated protein kinase (DAPK)-1, BCL2 interacting protein 3 like (BNIP3L), Bcl-1 antagonist X, phosphatase and tensin homolog-induced kinase (PINK), Unc-51 like autophagy activating kinase 1, nuclear dot protein 52, and p62. In silico functional analyses including gene ontology enrichment and the protein-protein interaction network were performed. Results : A total of 56 SAH patients were included and 22 (38.6%) of them experienced DCI. The DCI patients had significantly increased mRNA levels of DAPK1, BNIP3L, and PINK1, and increased expression of BECN1 compared to the non-DCI patients. The most enriched biological process was the positive regulation of autophagy, followed by the response to mitochondrial depolarization. The molecular functions ubiquitin-like protein ligase binding and ubiquitin-protein ligase binding were enriched. In the cluster of cellular components, Lewy bodies and the phagophore assembly site were enriched. BECN1 was the most connected gene among the differentially expressed markers related to autophagy and mitophagy in the development of DCI. Conclusion : Our study may provide novel insight into mitochondrial dysfunction in DCI pathogenesis.

Mitochondria-mediated defense mechanisms against pathogens in Caenorhabditis elegans

  • Kwon, Sujeong;Kim, Eun Ji E.;Lee, Seung-Jae V.
    • BMB Reports
    • /
    • v.51 no.6
    • /
    • pp.274-279
    • /
    • 2018
  • Mitochondria are crucial organelles that generate cellular energy and metabolites. Recent studies indicate that mitochondria also regulate immunity. In this review, we discuss key roles of mitochondria in immunity against pathogen infection and underlying mechanisms, focusing on discoveries using Caenorhabditis elegans. Various mitochondrial processes, including mitochondrial surveillance mechanisms, mitochondrial unfolded protein response ($UPR^{mt}$), mitophagy, and reactive oxygen species (ROS) production, contribute to immune responses and resistance of C. elegans against pathogens. Biological processes of C. elegans are usually conserved across phyla. Thus, understanding the mechanisms of mitochondria-mediated defense responses in C. elegans may provide insights into similar mechanisms in complex organisms, including mammals.

Mitochondrial Uncoupling Attenuates Age-Dependent Neurodegeneration in C. elegans

  • Cho, Injeong;Song, Hyun-Ok;Cho, Jeong Hoon
    • Molecules and Cells
    • /
    • v.40 no.11
    • /
    • pp.864-870
    • /
    • 2017
  • The uncoupling protein 4 (ucp-4) gene is involved in age-dependent neurodegeneration in C. elegans. Therefore, we aimed to investigate the mechanism underlying the association between mitochondrial uncoupling and neurodegeneration by examining the effects of uncoupling agents and ucp-4 overexpression in C. elegans. Treatment with either DNP or CCCP improved neuronal defects in wild type during aging. Uncoupling agents also restored neuronal phenotypes of ucp-4 mutants to those exhibited by wild type, while ucp-4 overexpression attenuated the severity of age-dependent neurodegeneration. Neuronal improvements were further associated with reductions in mitochondrial membrane potentials. However, these age-dependent neuroprotective effects were limited in mitophagy-deficient mutant, pink-1, background. These results suggest that membrane uncoupling can attenuate age-dependent neurodegeneration by stimulating mitophagy.

Novel non-apoptotic cell death: ferroptosis (새로운 non-apoptotic 세포사멸: ferroptosis)

  • Woo, Seon Min;Kwon, Taeg Kyu
    • Journal of Yeungnam Medical Science
    • /
    • v.34 no.2
    • /
    • pp.174-181
    • /
    • 2017
  • Ferroptosis is a newly recognized type of cell death that results from iron-dependent lipid peroxidation and is different from other types of cell death, such as apoptosis, necrosis, and autophagic cell death. This type of cell death is characterized by mitochondrial shrinkage with an increased mitochondrial membrane density and outer mitochondrial membrane rupture. Ferroptosis can be induced by a loss of activity of system $X_c{^-}$ and the inhibition of glutathione peroxidase 4, followed by the accumulation of lipid reactive oxygen species (ROS). In addition, inactivation of the mevalonate and transsulfuration pathways is involved in the induction of ferroptosis. Moreover, nicotinamide adenine dinucleotide phosphate oxidase and p53 promote ferroptosis by increasing ROS production, while heat shock protein beta-1 and nuclear factor erythroid 2-related factor 2 inhibit ferroptosis by reducing iron uptake. This article outlines the molecular mechanisms and signaling pathways of ferroptosis regulation, and explains the roles of ferroptosis in human disease.

Modulation of MnSOD in Cancer: Epidemiological and Experimental Evidences

  • Kim, Ae-Kyong
    • Toxicological Research
    • /
    • v.26 no.2
    • /
    • pp.83-93
    • /
    • 2010
  • Since it was first observed in late 1970s that human cancers often had decreased manganese superoxide dismutase (MnSOD) protein expression and activity, extensive studies have been conducted to verify the association between MnSOD and cancer. Significance of MnSOD as a primary mitochondrial antioxidant enzyme is unquestionable; results from in vitro, in vivo and epidemiological studies are in harmony. On the contrary, studies regarding roles of MnSOD in cancer often report conflicting results. Although putative mechanisms have been proposed to explain how MnSOD regulates cellular proliferation, these mechanisms are not capitulated in epidemiological studies. This review discusses most recent epidemiological and experimental studies that examined the association between MnSOD and cancer, and describes emerging hypotheses of MnSOD as a mitochondrial redox regulatory enzyme and of how altered mitochondrial redox may affect physiology of normal as well as cancer cells.

The Interface Between ER and Mitochondria: Molecular Compositions and Functions

  • Lee, Soyeon;Min, Kyung-Tai
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1000-1007
    • /
    • 2018
  • Mitochondria and endoplasmic reticulum (ER) are essential organelles in eukaryotic cells, which play key roles in various biological pathways. Mitochondria are responsible for ATP production, maintenance of $Ca^{2+}$ homeostasis and regulation of apoptosis, while ER is involved in protein folding, lipid metabolism as well as $Ca^{2+}$ homeostasis. These organelles have their own functions, but they also communicate via mitochondrial-associated ER membrane (MAM) to provide another level of regulations in energy production, lipid process, $Ca^{2+}$ buffering, and apoptosis. Hence, defects in MAM alter cell survival and death. Here, we review components forming the molecular junctions of MAM and how MAM regulates cellular functions. Furthermore, we discuss the effects of impaired ER-mitochondrial communication in various neurodegenerative diseases.

Protein kinase C beta II upregulates intercellular adhesion molecule-1 via mitochondrial activation in cultured endothelial cells

  • Joo, Hee Kyoung;Lee, Yu Ran;Choi, Sunga;Park, Myoung Soo;Kang, Gun;Kim, Cuk-Seong;Jeon, Byeong Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.4
    • /
    • pp.377-384
    • /
    • 2017
  • Activation of protein kinase C (PKC) is closely linked with endothelial dysfunction. However, the effect of $PKC{\beta}II$ on endothelial dysfunction has not been characterized in cultured endothelial cells. Here, using adenoviral $PKC{\beta}II$ gene transfer and pharmacological inhibitors, the role of $PKC{\beta}II$ on endothelial dysfucntion was investigated in cultured endothelial cells. Phorbol 12-myristate 13-acetate (PMA) increased reactive oxygen species (ROS), p66shc phosphorylation, intracellular adhesion molecule-1, and monocyte adhesion, which were inhibited by $PKC{\beta}i$ (10 nM), a selective inhibitor of $PKC{\beta}II$. PMA increased the phosphorylation of CREB and manganese superoxide dismutase (MnSOD), which were also inhibited by $PKC{\beta}i$. Gene silencing of CREB inhibited PMA-induced MnSOD expression, suggesting that CREB plays a key role in MnSOD expression. Gene silencing of $PKC{\beta}II$ inhibited PMA-induced mitochondrial ROS, MnSOD, and ICAM-1 expression. In contrast, overexpression of $PKC{\beta}II$ using adenoviral $PKC{\beta}II$ increased mitochondrial ROS, MnSOD, ICAM-1, and p66shc phosphorylation in cultured endothelial cells. Finally, $PKC{\beta}II$-induced ICAM-1 expression was inhibited by Mito-TEMPO, a mitochondrial ROS scavenger, suggesting the involvement of mitochondrial ROS in PKC-induced vascular inflammation. Taken together, the results suggest that $PKC{\beta}II$ plays an important role in PMA-induced endothelial dysfunction, and that the inhibition of $PKC{\beta}II$-dependent p66shc signaling acts as a therapeutic target for vascular inflammatory diseases.

Gynostemma pentaphyllum extract and Gypenoside L enhance skeletal muscle differentiation and mitochondrial metabolism by activating the PGC-1α pathway in C2C12 myotubes

  • Kim, Yoon Hee;Jung, Jae In;Jeon, Young Eun;Kim, So Mi;Oh, Tae Kyu;Lee, Jaesun;Moon, Joo Myung;Kim, Tae Young;Kim, Eun Ji
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.14-32
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Peroxisome proliferator-activated receptor-gamma co-activator-1α (PGC-1α) has a central role in regulating muscle differentiation and mitochondrial metabolism. PGC-1α stimulates muscle growth and muscle fiber remodeling, concomitantly regulating lactate and lipid metabolism and promoting oxidative metabolism. Gynostemma pentaphyllum (Thumb.) has been widely employed as a traditional herbal medicine and possesses antioxidant, anti-obesity, anti-inflammatory, hypolipemic, hypoglycemic, and anticancer properties. We investigated whether G. pentaphyllum extract (GPE) and its active compound, gypenoside L (GL), affect muscle differentiation and mitochondrial metabolism via activation of the PGC-1α pathway in murine C2C12 myoblast cells. MATERIALS/METHODS: C2C12 cells were treated with GPE and GL, and quantitative reverse transcription polymerase chain reaction and western blot were used to analyze the mRNA and protein expression levels. Myh1 was determined using immunocytochemistry. Mitochondrial reactive oxygen species generation was measured using the 2'7'-dichlorofluorescein diacetate assay. RESULTS: GPE and GL promoted the differentiation of myoblasts into myotubes and elevated mRNA and protein expression levels of Myh1 (type IIx). GPE and GL also significantly increased the mRNA expression levels of the PGC-1α gene (Ppargc1a), lactate metabolism-regulatory genes (Esrra and Mct1), adipocyte-browning gene fibronectin type III domain-containing 5 gene (Fndc5), glycogen synthase gene (Gys), and lipid metabolism gene carnitine palmitoyltransferase 1b gene (Cpt1b). Moreover, GPE and GL induced the phosphorylation of AMP-activated protein kinase, p38, sirtuin1, and deacetylated PGC-1α. We also observed that treatment with GPE and GL significantly stimulated the expression of genes associated with the anti-oxidative stress response, such as Ucp2, Ucp3, Nrf2, and Sod2. CONCLUSIONS: The results indicated that GPE and GL enhance exercise performance by promoting myotube differentiation and mitochondrial metabolism through the upregulation of PGC-1α in C2C12 skeletal muscle.

Complete Mitochondrial Genome of Echinostoma hortense (Digenea: Echinostomatidae)

  • Liu, Ze-Xuan;Zhang, Yan;Liu, Yu-Ting;Chang, Qiao-Cheng;Su, Xin;Fu, Xue;Yue, Dong-Mei;Gao, Yuan;Wang, Chun-Ren
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.2
    • /
    • pp.173-179
    • /
    • 2016
  • Echinostoma hortense (Digenea: Echinostomatidae) is one of the intestinal flukes with medical importance in humans. However, the mitochondrial (mt) genome of this fluke has not been known yet. The present study has determined the complete mt genome sequences of E. hortense and assessed the phylogenetic relationships with other digenean species for which the complete mt genome sequences are available in GenBank using concatenated amino acid sequences inferred from 12 protein-coding genes. The mt genome of E. hortense contained 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 non-coding region. The length of the mt genome of E. hortense was 14,994 bp, which was somewhat smaller than those of other trematode species. Phylogenetic analyses based on concatenated nucleotide sequence datasets for all 12 protein-coding genes using maximum parsimony (MP) method showed that E. hortense and Hypoderaeum conoideum gathered together, and they were closer to each other than to Fasciolidae and other echinostomatid trematodes. The availability of the complete mt genome sequences of E. hortense provides important genetic markers for diagnostics, population genetics, and evolutionary studies of digeneans.

Effect of Exercise Intensity on Unfolded Protein Response in Skeletal Muscle of Rat

  • Kim, Kihoon;Kim, Yun-Hye;Lee, Sung-Hye;Jeon, Man-Joong;Park, So-Young;Doh, Kyung-Oh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.3
    • /
    • pp.211-216
    • /
    • 2014
  • Endoplasmic reticulum (ER) stress, unfolded protein response (UPR), and mitochondrial biogenesis were assessed following varying intensities of exercise training. The animals were randomly assigned to receive either low- (LIT, n=7) or high intensity training (HIT, n=7), or were assigned to a control group (n=7). Over 5 weeks, the animals in the LIT were exercised on a treadmill with a $10^{\circ}$ incline for 60 min at a speed of 20 m/min group, and in the HIT group at a speed of 34 m/min for 5 days a week. No statistically significant differences were found in the body weight, plasma triglyceride, and total cholesterol levels across the three groups, but fasting glucose and insulin levels were significantly lower in the exercise-trained groups. Additionally, no statistically significant differences were observed in the levels of PERK phosphorylation in skeletal muscles between the three groups. However, compared to the control and LIT groups, the level of BiP was lower in the HIT group. Compared to the control group, the levels of ATF4 in skeletal muscles and CHOP were significantly lower in the HIT group. The HIT group also showed increased PGC-$1{\alpha}$ mRNA expression in comparison with the control group. Furthermore, both of the trained groups showed higher levels of mitochondrial UCP3 than the control group. In summary, we found that a 5-week high-intensity exercise training routine resulted in increased mitochondrial biogenesis and decreased ER stress and apoptotic signaling in the skeletal muscle tissue of rats.