DOI QR코드

DOI QR Code

Complete Mitochondrial Genome of Echinostoma hortense (Digenea: Echinostomatidae)

  • Liu, Ze-Xuan (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Zhang, Yan (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Liu, Yu-Ting (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Chang, Qiao-Cheng (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Su, Xin (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Fu, Xue (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Yue, Dong-Mei (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Gao, Yuan (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Wang, Chun-Ren (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University)
  • Received : 2015.08.05
  • Accepted : 2016.01.23
  • Published : 2016.04.30

Abstract

Echinostoma hortense (Digenea: Echinostomatidae) is one of the intestinal flukes with medical importance in humans. However, the mitochondrial (mt) genome of this fluke has not been known yet. The present study has determined the complete mt genome sequences of E. hortense and assessed the phylogenetic relationships with other digenean species for which the complete mt genome sequences are available in GenBank using concatenated amino acid sequences inferred from 12 protein-coding genes. The mt genome of E. hortense contained 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 non-coding region. The length of the mt genome of E. hortense was 14,994 bp, which was somewhat smaller than those of other trematode species. Phylogenetic analyses based on concatenated nucleotide sequence datasets for all 12 protein-coding genes using maximum parsimony (MP) method showed that E. hortense and Hypoderaeum conoideum gathered together, and they were closer to each other than to Fasciolidae and other echinostomatid trematodes. The availability of the complete mt genome sequences of E. hortense provides important genetic markers for diagnostics, population genetics, and evolutionary studies of digeneans.

Keywords

References

  1. Yamaguti S. Synopsis of digenetic trematodes of vertebrates. Tokyo, Japan. Keigaku Publishing Co. 1971, pp 277-323.
  2. Chai JY, Shin EH, Lee SH, Rim HJ. Foodborne intestinal flukes in Southeast Asia. Korean J Parasitol 2009; 47 (suppl): S69-S102. https://doi.org/10.3347/kjp.2009.47.S.S69
  3. Lee SK, Chung NS, Ko IH, Ko HI, Chai JY. Two cases of natural human infection by Echinostoma hortense. Korean J Parasitol 1986; 24: 77-81. https://doi.org/10.3347/kjp.1986.24.1.77
  4. Asada J. On a new echinostomatid trematode and its life history. Trans Jpn Soc Pathol 1926; 16: 293-294.
  5. Chai JY, Park JH, Jung BK, Guk SM, Kim JL, Shin EH, Klein TA, Kim HC, Chong ST, Baek LJ, Song JW. Echinostome infections in the striped-field mouse, Apodemus agrarius, and the Ussuri white-toothed shrew, Crocidura lasiura, caught near the demilitarized zone, Gyeonggi-do (Province), Republic of Korea. Korean J Parasitol 2009; 47: 311-314. https://doi.org/10.3347/kjp.2009.47.3.311
  6. Jiang XL, Guan GJ, Yan JB. The significance of the Echinostoma hortense found in the pig in Sichuan. Agr Sci Rep 1985; 2: 82-84 (in Chinese).
  7. Cho SY, Kang SY, Ryang YS. Helminthes infections in the small intestine of stray dogs in Ejungbu city, Kyunggi do, Korea. Korean J Parasitol 1981; 19: 55-59. https://doi.org/10.3347/kjp.1981.19.1.55
  8. Chai JY, Bahk YY, Sohn WM. Trematodes recovered in the small intestine of stray cats in the Republic of Korea. Korean J Parasitol 2013; 51: 99-106. https://doi.org/10.3347/kjp.2013.51.1.99
  9. Fan SQ, Sun MF. A case of Echinostoma hortense first found in human body in China and morphological observation of the worm. J Harbin Med Univ 1989; 23: 161-163 (in Chinese).
  10. Arizono N, Uemoto K, Kondo K, Matsuno K, Yoshida Y, Maeda T, Yoshida H, Muto K, Inoue Z, Takahashi K. Studies on Echinostoma hortense Asada, 1926 with special reference to its human infection. Jpn J Parasitol 1976; 1: 36-45 (in Japanses).
  11. Son WY, Huh S, Lee SU, Woo HC, Hong SJ. Intestinal trematode infections in the villagers in Koje-myon, Kochang-gun, Kyongsangnam-do, Korea. Korean J Parasitol 1994; 32: 149-155. https://doi.org/10.3347/kjp.1994.32.3.149
  12. Wang Y, Wang CR, Zhao GH, Gao JF, Li MW, Zhu XQ. The complete mitochondrial genome of Orientobilharzia turkestanicum supports its affinity with African Schistosoma spp. Infect Genet Evol 2011; 11: 1964-1970. https://doi.org/10.1016/j.meegid.2011.08.030
  13. Lee D, Choe S, Park H, Jeon HK, Chai JY, Sohn WM, Yong TS, Min DY, Rim HJ, Eom KS. Complete mitochondrial genome of Haplorchis taichui and comparative analysis with other trematodes. Korean J Parasitol 2013; 51: 719-726. https://doi.org/10.3347/kjp.2013.51.6.719
  14. Cribb TH, Bray RA, Littlewood DTJ, Pichelin SP, Herniou EA. The Digenea. In Littlewood DTJ, Bray RA, eds, Interrelationships of the Platyhelminthes. London, UK. Taylor and Francis. 2001, pp 168-185.
  15. Cho CM, Tak WY, Kweon YO, Kim SK, Choi YH, Kong HH, Chung DI. A human case of Echinostoma hortense (Trematoda: Echinostomatidae) infection diagnosed by gastroduodenal endoscopy in Korea. Korean J Parasitol 2003; 41: 117-120. https://doi.org/10.3347/kjp.2003.41.2.117
  16. Le TH, Blair D, McManus DP. Complete DNA sequence and gene organization of the mitochondrial genome of the liverfluke, Fasciola hepatica L. (Platyhelminthes: Trematoda). Parasitology 2001; 123: 609-621.
  17. Burland TG. DNASTAR's Lasergene sequence analysis software. Methods Mol Biol 2000; 132: 71-91.
  18. Shekhovtsov SV, Katokhin AV, Kolchanov NA, Mordvinov VA. The complete mitochondrial genomes of the liver flukes Opisthorchis felineus and Clonorchis sinensis (Trematoda). Parasitol Int 2010; 59: 100-103. https://doi.org/10.1016/j.parint.2009.10.012
  19. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  20. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012; 28: 1647-1649. https://doi.org/10.1093/bioinformatics/bts199
  21. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  22. Swofford DL. PAUP*. Phylogenetic analysis using parsimony (and other methods). Version 4.0b10. Sunderland MA, Sinauer Associates. 2003.
  23. Page RD. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 1996; 12: 357-358.
  24. Biswal DK, Chatterjee A, Bhattacharya A, Tandon V. The mitochondrial genome of Paragonimus westermani (Kerbert, 1878), the Indian isolate of the lung fluke representative of the family Paragonimidae (Trematoda). Peer J 2014; 2: e484. https://doi.org/10.7717/peerj.484
  25. Yan HB, Wang XY, Lou ZZ, Li L, Blair D, Yin H, Cai JZ, Dai XL, Lei MT, Zhu XQ, Cai XP, Jia WZ. The mitochondrial genome of Paramphistomum cervi (Digenea), the first representative for the family Paramphistomidae. PLoS One 2013; 8: e71300. https://doi.org/10.1371/journal.pone.0071300
  26. Kudlai O, Tkach VV, Pulis EE, Kostadinova A. Redescription and phylogenetic relationships of Euparyphium capitaneum Dietz, 1909, the type-species of Euparyphium Dietz, 1909 (Digenea: Echinostomatidae). Syst Parasitol 2015; 90: 53-65. https://doi.org/10.1007/s11230-014-9533-0
  27. Kostadinova A, Herniou EA, Barrett J, Littlewood DT. Phylogenetic relationships of Echinostoma Rudolphi, 1809 (Digenea: Echinostomatidae) and related genera re-assessed via DNA and morphological analyses. Syst Parasitol 2003; 54: 159-176. https://doi.org/10.1023/A:1022681123340
  28. Saijuntha W, Sithithaworn P, Duenngai K, Kiatsopit N, Andrews RH, Petney TN. Genetic variation and relationships of four species of medically important echinostomes (Trematoda: Echinostomatidae) in South-East Asia. Infect Genet Evol 2011; 11: 375-381. https://doi.org/10.1016/j.meegid.2010.11.009
  29. Detwiler JT, Bos DH, Minchella DJ. Revealing the secret lives of cryptic species: examining the phylogenetic relationships of echinostome parasites in North America. Mol Phylogenet Evol 2010; 55: 611-620. https://doi.org/10.1016/j.ympev.2010.01.004

Cited by

  1. Mitochondrial DNA Evidence Supports the Hypothesis that Triodontophorus Species Belong to Cyathostominae vol.8, pp.None, 2016, https://doi.org/10.3389/fmicb.2017.01444
  2. A fine‐scale phylogenetic assessment of digenean trematodes in central Alberta reveals we have yet to uncover their total diversity vol.9, pp.6, 2016, https://doi.org/10.1002/ece3.4939
  3. Characterization of the complete mitochondrial genome of Uvitellina sp., representative of the family Cyclocoelidae and phylogenetic implications vol.118, pp.7, 2016, https://doi.org/10.1007/s00436-019-06358-y
  4. Characterization of the complete mitochondrial genome sequence of Tracheophilus cymbius (Digenea), the first representative from the family Cyclocoelidae vol.94, pp.None, 2020, https://doi.org/10.1017/s0022149x19000932
  5. Characterization and comparative analysis of the complete mitochondrial genome of Azygiahwangtsiyui Tsin, 1933 ( Digenea ), the first for a member of the family Azygiidae vol.945, pp.None, 2016, https://doi.org/10.3897/zookeys.945.49681
  6. First next-generation sequencing data for Haploporidae (Digenea: Haploporata): characterization of complete mitochondrial genome and ribosomal operon for Parasaccocoelium mugili Zhukov, 1971 vol.120, pp.6, 2016, https://doi.org/10.1007/s00436-021-07159-y