• Title/Summary/Keyword: Mitigation Scenario

Search Result 93, Processing Time 0.02 seconds

Mathematical model for reactive transport of heavy metals in soil column: Based on PHREEQC and HP1 simulators

  • Tameh, Fatemeh Izadi;Asadollahfardi, Gholamreza;Darban, Ahmad Khodadadi
    • Advances in environmental research
    • /
    • v.6 no.1
    • /
    • pp.67-81
    • /
    • 2017
  • Mining activities play a significant role in environmental pollution by producing large amounts of tailings which comprise heavy metals. The impressive increase in mining activities in recent decades, due to their high influence on the industry of developing countries, duplicates the need for a substantial effort to develop and apply efficient measures of pollution control, mitigation, and abatement. In this study, our objective was to investigate the effect of simulation of the leachate, pH and inflow intensity of transport of $Pb^{2+}$, $Zn^{2+}$, and $Cd^{2+}$ through Lakan lead and zinc plant tailings, in Iran, and to evaluate the modeling efficiency by comparing the modeling results and the results obtained from previous column studies. We used the HP1 model and the PHREEQC database to simulate metals transport through a saturated soil column during a 15 day time period. The simulations assumed local equilibrium. As expected, a lower pH and inflow intensity increased metal transport. The retardation of heavy metals followed the order $Zn^{2+}$ > $Pb^{2+}$ > $Cd^{2+}$ and the removal concentrations of Cd, Pb, and Zn at the inflow intensity critical scenario, and Cd and Pb at inflow acidity critical scenario exceeded the allowable EPA and Iranian's 1053 standard thresholds. However, although the simulation results generally agreed well with the results of the column study, improvements are expected by using multi-dimensional models and a kinetic modeling approach for the reactions involved. The results of such investigations will be highly useful for designing preventative strategies to control reactive transport of hazardous metals and minimize their environmental effects.

Assessment of Hydrologic Risk of Extreme Drought According to RCP Climate Change Scenarios Using Bivariate Frequency Analysis (이변량 빈도분석을 이용한 RCP 기후변화 시나리오에 따른 극한가뭄의 수문학적 위험도 평가)

  • Park, Ji Yeon;Kim, Ji Eun;Lee, Joo-Heon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.561-568
    • /
    • 2019
  • Recently, Korea has suffered from severe droughts due to climate change. Therefore, we need to pay attention to the change of drought risk to develop appropriate drought mitigation measures. In this study, we investigated the changes of hydrologic risk of extreme drought using the current observed data and the projected data according to the RCP 4.5 and 8.5 climate change scenarios. The bivariate frequency analysis was performed for the paired data of drought duration and severity extracted by the threshold level method and by eliminating pooling and minor droughts. Based on the hydrologic risk of extreme drought events Jeonbuk showed the highest risk and increased by 51 % than the past for the RCP 4.5 scenario, while Gangwon showed the highest risk and increased by 47 % than the past for the RCP 8.5 scenario.

Effects of District Energy Supply by Combined Heat and Power Plant on Greenhouse Gas Emission Mitigation (열병합발전을 이용한 집단에너지사업의 온실가스 감축효과)

  • Shin, Kyoung-A;Dong, Jong-In;Kang, Jae-Sung;Im, Yong-Hoon;Kim, Da-Hye
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.213-220
    • /
    • 2017
  • The purpose of this study is to analyze effects of Greenhouse Gas (GHG) emission reduction in district energy business mainly based on Combined Heat and Power (CHP) plants. Firstly this paper compares the actual carbon intensity of power production between conventional power plants and district energy plants. To allocate the GHG from CHP plants, two of different methods which were Alternative Generation Method and Power Bonus Method, have been investigated. The carbon intensity of power production in district energy plants ($0.43tonCO_2e/MWh$) was relatively lower than conventional gas-fired power plants ($0.52tonCO_2e/MWh$). Secondly we assessed the cost effectiveness of reduction by district energy sector compared to the other means using TIMES model method. We find that GHG marginal abatement cost of 'expand CHP' scenario (-$134/ton$CO_2$) is even below than renewable energy scenario such as photovoltaic power generation ($87/ton$CO_2$). Finally the GHG emission reduction potential was reviewed on the projected GHG emission emitted when the same amount of energy produced in combination of conventional power plants and individual boilers as substitution of district energy. It showed there were 10.1~41.8% of GHG emission reduction potential in district energy compared to the combination of conventional power plants and individual boilers.

Simulation Analysis of Urban Heat Island Mitigation of Green Area Types in Apartment Complexes (유형별 녹지 시뮬레이션을 통한 아파트 단지 내 도시열섬현상 저감효과 분석)

  • Ji, Eun-Ju;Kim, Da-Been;Kim, Yu-Gyeong;Lee, Jung-A
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.153-165
    • /
    • 2023
  • The purpose of this study is to propose effective scenarios for green areas in apartment complexes that can improve the connection between green spaces considering wind flow, thermal comfort, and mitigation of the urban heat island effect. The study site was an apartment complex in Godeok-dong, Gangdong-gu, Seoul, Korea. The site selection was based on comparing temperatures and discomfort index data collected from June to August 2020. Initially, the thermal and wind environment of the current site was analyzed. Based on the findings, three scenarios were proposed, taking into account both green patches and corridor elements: Scenario 1 (green patch), Scenario 2 (green corridor), and Scenario 3 (green patch & corridor). Subsequently, each scenario's wind speed, wind flow, and thermal comfort were analyzed using ENVI-met to compare their effectiveness in mitigating the urban heat island effect. The study results demonstrated that green patches contributed to increased wind speed and improved wind flow, leading to a reduction of 31..20% in the predicted mean vote (PMV) and 68.59% in the predicted percentage of dissatisfied (PET). On the other hand, green corridors facilitated the connection of wind paths and further increased wind speed compared to green patches. They proved to be more effective than green patches in mitigating the urban heat island, resulting in a reduction of 92.47% in PMV and 90.14% in PET. The combination of green patches and green corridors demonstrated the greatest increase in wind speed and strong connectivity within the apartment complex, resulting in a reduction of 95.75% in PMV and 95.35% in PET. However, patches in narrow areas were found to be more effective in improving thermal comfort than green corridors. Therefore, to effectively mitigate the urban heat island effect, enhancing green areas by incorporating green corridors in conjunction with green patches is recommended. This study can serve as fundamental data for planning green areas to mitigate future urban heat island effects in apartment complexes. Additionally, it can be considered a method to improve urban resilience in response to the challenges posed by the urban heat island effect.

Estimation of Flow Loads Characteristics each Sub-watershed for TMDL (TMDL 적용을 위한 소유역별 유출부하 특성 분석)

  • Kim, Joo-Hun;Kim, Kyung-Tak;Lee, Jin-Won
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.443-453
    • /
    • 2011
  • This research aims at suggesting the mitigation measures of decreasing pollution by analyzing land cover characteristics according to subwatershed, and non-pollutant load characteristics occurring in each subwatershed. Mushim-cheon is selected as a research area, and HyGIS-SWAT is used as a water quality model. This research analyzed outflow load characteristics by classifying land cover, which has over 50% classified items, into a city area, a farmland area and a forest area. The result shows that the yearly occurrence load quantity represents a farmland area, a forest area and a city area in order. In subwatershed-2, occurrence load quantity is analyzed by setting up a buffer zone in the center of stream, and by changing a farmland area into a natural grass land. Therefore, a farmland area in a subwatershed changes 36.6% into 27.9% and 15.3% comparing to previous land cover change. In the analysis of sediment loads occurrence quantity and nutritive salt load occurrence quantity in subwatershed-2, sediment loads occurrence quantity decreases 52% to about 47%, and nutritive salt load decreases 49% and 34% in compare with previous change. Hereafter, this research will set up the mitigation measures scenario, and find out which is more effective for the mitigation measures.

Comparative Analysis of Scenarios for Reducing GHG Emissions in Korea by 2050 Using the Low Carbon Path Calculator (저탄소 경로 모형을 활용한 2050년 한국의 온실가스 감축 시나리오 비교 분석)

  • Park, Nyun-Bae;Yoo, Jung-Hwa;Jo, Mi-Hyun;Yun, Seong-Gwon;Jeon, Eui Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.556-570
    • /
    • 2012
  • The Low Carbon Path Calculator is an excel-based model to project greenhouse gas emissions from 2009 to 2050, which is based on the 2050 Pathways Calculator developed by the UK Department of Energy and Climate Change (DECC). Scenarios are developed to reduce GHG emissions in Korea at 50% based on 2005 levels by 2050 using a Low Carbon Path Calculator. They were classified in four different cases, which are high renewable, high nuclear, high CCS and mixed option scenarios. The objectives of this study are to compare scenarios in terms of GHG emissions, final energy, primary energy and electricity generation and examine the usefulness of that model in terms of identifying pathways towards a low carbon emission society. This model will enhance the understanding of the pathways toward a low carbon society and the level of the climate change policy for policy makers, stakeholders, and the public. This study can be considered as a reference for developing strategies in reducing GHG emissions in the long term.

Analysis on the Effects of Interference from HAPS ground stations to P-MP FWA System (HAPS 지상국에서 P-MP FWA 시스템으로의 간섭 영향 분석)

  • Ham, Hyoung-Il;Choi, Mun-Hwan;Kang, Young-Heung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.157-162
    • /
    • 2005
  • In this paper, we have analyzed the effects of interference from HAPS ground stations to P-MP FWA base station and to P-MP FWA terminal station using more detail parameters such as a new interference model, a realistic HAPS scenario, practical antenna patterns for both the HAPS system and FWA systems. The analysis results show that, in the case of interference from HAPS GSs into a P-MP BS, compatibility of the two systems can be obtained by using a sectored BS antenna with the boresight directed away from the nadir However, in the case of interference from HAPS GSs into a P-MP TS, the two systems cannot operate effectively in the same band unless the separation distance is guranteed and/or some form of interference mitigation technique is employed such as dynamic channel allocation.

  • PDF

Mitigation of seismic drift response of braced frames using short yielding-core BRBs

  • Pandikkadavath, Muhamed Safeer;Sahoo, Dipti Ranjan
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.285-302
    • /
    • 2017
  • Buckling-restrained braced frames (BRBFs) are commonly used as the lateral force-resisting systems in building structures in the seismic regions. The nearly-symmetric hysteretic response and the delayed brace core fracture of buckling-restrained braces (BRBs) under the axial cyclic loading provide the adequate lateral force and deformation capacity to BRBFs under the earthquake excitation. However, the smaller axial stiffness of BRBs result in the undesirable higher residual drift response of BRBFs in the post-earthquake scenario. Two alternative approaches are investigated in this study to improve the elastic axial stiffness of BRBs, namely, (i) by shortening the yielding cores of BRBs; and (ii) by reducing the BRB assemblies and adding the elastic brace segments in series. In order to obtain the limiting yielding core lengths of BRBs, a modified approach based on Coffin-Manson relationship and the higher mode compression buckling criteria has been proposed in this study. Both non-linear static and dynamic analyses are carried out to analytically evaluate the seismic response of BRBFs fitted with short-core BRBs of two medium-rise building frames. Analysis results showed that the proposed brace systems are effective in reducing the inter-story and residual drift response of braced frames without any significant change in the story shear and the displacement ductility demands.

Private sector engagement in large scale solar power deployment in Sri Lanka: Role of green climate fund

  • Liyanage, Namal
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.6 no.1
    • /
    • pp.21-34
    • /
    • 2020
  • Sri Lanka has strongly understood the importance of mitigation of climate change and various measures have been taken. To tackle the climate change, after ratifying Paris Agreement, Sri Lanka has pledged to reduce her greenhouse gas emission in the energy sector by 20% (16% unconditional and 4% conditional) by 2030 based on the BAU scenario. Simultaneously, the government introduced its new energy policy and strategies in 2019 with a vision of achieving carbon neutrality by 2050. This paper survey related key government documents, policies, reports, and academic articles to investigate opportunities for the private sector to invest large scale solar power deployment (10 MW or above) and to get support from climate finance under article 6 of the Paris Agreement. It has found, growing concern on the environment, energy security issues and increase import expenses for fossil fuels are the main influencing factors to move renewable sources. Further, government investment and FDI both have gradually decreased in the energy sector. Therefore, an alternative financing mechanism is needed. Although the private sector allowed investing in the energy sector since 1996 with the introduction of IPP (Independent Power Producers), it could not make considerable progress on involving large scale solar utility projects. This has revealed government policy is not aligning with the long term generation plan of the electricity sector. The study has also found, it needs more strategic road map, coordination with different institutions, monitoring system to enhance large scale solar contribution.

The Effects of Drought on Forest and Forecast of Drought by Climate Change in Gangwon Region

  • Chae, Hee-Mun;Lee, Sang-Sin;Um, Gi-Jeung
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.2
    • /
    • pp.97-105
    • /
    • 2012
  • A Gangwon region consisting of over 80% of forest area has industries that have been developed by utilizing its clean region image. However, the recent climate change has increased the forest disease & insect pest as well as the forest fire and the major cause is known to be the increase in the frequency of a drought occurrence. From the aspect of climate change, it can be said that drought and forest are important in every aspect of the adaptation and mitigation of climate change measure as they increase forest disease & insect pest that leads to desolation of usable forest resource. In addition, the increase of forest fire reduces resources that can absorb greenhouse gas, which leads to increase in green house emission. The purpose of this study is to provide a motive for concentrating administrative power for protecting forest in a Gangwon region by selecting a drought management needed local government through a drought forecast according to the climate change scenario of a Gangwon region.