DOI QR코드

DOI QR Code

Simulation Analysis of Urban Heat Island Mitigation of Green Area Types in Apartment Complexes

유형별 녹지 시뮬레이션을 통한 아파트 단지 내 도시열섬현상 저감효과 분석

  • Ji, Eun-Ju (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Kim, Da-Been (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Kim, Yu-Gyeong (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Lee, Jung-A (Division of Environmental Science and Ecological Engineering, Korea University)
  • 지은주 (고려대학교 환경생태공학부 ) ;
  • 김다빈 (고려대학교 환경생태공학부 ) ;
  • 김유경 (고려대학교 환경생태공학부 ) ;
  • 이정아 (고려대학교 환경생태공학부 )
  • Received : 2023.05.26
  • Accepted : 2023.06.12
  • Published : 2023.06.30

Abstract

The purpose of this study is to propose effective scenarios for green areas in apartment complexes that can improve the connection between green spaces considering wind flow, thermal comfort, and mitigation of the urban heat island effect. The study site was an apartment complex in Godeok-dong, Gangdong-gu, Seoul, Korea. The site selection was based on comparing temperatures and discomfort index data collected from June to August 2020. Initially, the thermal and wind environment of the current site was analyzed. Based on the findings, three scenarios were proposed, taking into account both green patches and corridor elements: Scenario 1 (green patch), Scenario 2 (green corridor), and Scenario 3 (green patch & corridor). Subsequently, each scenario's wind speed, wind flow, and thermal comfort were analyzed using ENVI-met to compare their effectiveness in mitigating the urban heat island effect. The study results demonstrated that green patches contributed to increased wind speed and improved wind flow, leading to a reduction of 31..20% in the predicted mean vote (PMV) and 68.59% in the predicted percentage of dissatisfied (PET). On the other hand, green corridors facilitated the connection of wind paths and further increased wind speed compared to green patches. They proved to be more effective than green patches in mitigating the urban heat island, resulting in a reduction of 92.47% in PMV and 90.14% in PET. The combination of green patches and green corridors demonstrated the greatest increase in wind speed and strong connectivity within the apartment complex, resulting in a reduction of 95.75% in PMV and 95.35% in PET. However, patches in narrow areas were found to be more effective in improving thermal comfort than green corridors. Therefore, to effectively mitigate the urban heat island effect, enhancing green areas by incorporating green corridors in conjunction with green patches is recommended. This study can serve as fundamental data for planning green areas to mitigate future urban heat island effects in apartment complexes. Additionally, it can be considered a method to improve urban resilience in response to the challenges posed by the urban heat island effect.

도시 열섬현상을 완화하기 위하여 본 연구는 아파트 단지 내 바람의 흐름과 열쾌적성을 고려하여 녹지 연결성을 향상시키기 위한 효과적인 녹지 계획 시나리오를 제안하는 것에 있다. 연구의 사례 대상지는 서울특별시를 대상으로 2020년 6월부터 8월까지 수집된 온도 및 불쾌지수 자료를 비교하여 강동구 고덕동에 위치한 아파트 단지로 선정하였다. 먼저, 연구대상지 현재의 열환경과 바람환경을 분석하였다. 이를 바탕으로 녹지의 패치와 코리도 형태의 요소를 고려하여 시나리오 1(패치), 시나리오 2(코리도), 시나리오 3(패치+ 코리도)의 세 가지 시나리오를 계획하였다. 이후, 각각의 시나리오별 풍속, 풍향, 그리고 열쾌적성을 ENVI-met로 분석하여 도시 열섬현상의 완화효과를 비교하였다. 연구의 결과, 패치 형태의 녹지는 풍속의 증가 및 풍량 개선에 기여하여 예상온열감(PMV)가 31.20% 감소하는 효과를 보였으며(시나리오 1), 열쾌적성 지표(PET)가 68.59%감소하는 것으로 나타났다. 반면 코리도 형태의 녹지로 계획한 경우 바람길의 연결이 용이하여 패치 형태의 녹지 계획에 비하여 풍속이 더욱 높아지는 결과가 나타나 예상온열감(PMV)은 92.47%, 열쾌적성 지표(PET)는 90.14% 감소하였다 (시나리오 2). 녹지 패치와 녹지 코리도를 복합적으로 계획한 경우 가장 큰 풍속의 증가와 연결성을 보여 예상온열감(PMV)에서 95.75%, 열쾌적성 지표(PET)에서 95.35% 감소하는 것으로 나타났다(시나리오 3). 그러나 대상지 내에서 협소한 지역의 경우 패치형 녹지계획이 코리도형의 녹지 계획에 비하여 열쾌적성을 개선하는 데에 더 효과적으로 나타났다. 따라서, 연구의 결과에 근거하여 도시열섬현상을 효과적으로 완화하기 위해서는 패치형태의 녹지와 코리도 형태의 녹지의 계획의 복합적인 형태로 계획될 수 있도록 제안하고자 한다. 본 연구의 결과는 향후 도시형 아파트단지의 도시열섬현상 완화를 위한 녹지계획의 가이드를 제시하여 도시열섬현상에 따른 회복력을 향상시키기 위한 기초자료를 제시할 수 있을 것이다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2021R1A6A1A10045235), 고려대학교 특별연구비에 의하여 수행되었음.

References

  1. Aboelata, A. and S. Sodoudi(2019) Evaluating urban vegetation scenarios to mitigate urban heat island and reduce buildings' energy in dense built-up areas in Cairo. Building and Environment 166: 106407. 
  2. Asgarian, A., B. J. Amiri and Y. Sakieh(2015) Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach. Urban Ecosystems 18(1): 209-222.  https://doi.org/10.1007/s11252-014-0387-7
  3. Bruse, M. and H. Fleer(1998) Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environmental Modelling & Software 13(3-4): 373-384.  https://doi.org/10.1016/S1364-8152(98)00042-5
  4. Cha, J. G., E. H. Jung, J. W. Ryu and D. W. Kim(2007) Constructing a green network and wind corridor to alleviate the urban heat-island. Journal of the Korean Association of Geographic Information Studies 10(1): 102-112. 
  5. Elgamal, N. F.(2017) Impact of Street Design on Urban Ventilation in Hot Dry Climate Using Envi-Met, Case of Greater Cairo Region. In 1st International Conference on Towards a Better Quality of Life. 
  6. Eum, J. H.(2019) Analysis and utilization strategies of ventilation corridor characteristics in Jeon-Ju area. Korean Journal of Environment and Ecology 33(3): 366-374.  https://doi.org/10.13047/KJEE.2019.33.3.366
  7. Eum, J. H., J. H. Oh, J. M. Son, K. Kim, J. B. Baek and C. Y. Yi(2019) Analysis schemes of wind ventilation forest types -A case study of Daegu metropolitan city-. Journal of the Korean Association of Geographic Information Studies 22(4): 12-23.  https://doi.org/10.11108/KAGIS.2019.22.4.012
  8. Evola, G., A. Gagliano, A. Fichera, L. Marletta, F. Martinico, F. Nocera and A. Pagano(2017) UHI effects and strategies to improve outdoor thermal comfort in dense and old neighbourhoods. Energy Procedia 134: 692-701.  https://doi.org/10.1016/j.egypro.2017.09.589
  9. Fanger, P. O.(1970) Thermal Comfort. Analysis and Applications in Environmental Engineering. Thermal Comfort. Analysis and Applications in Environmental Engineering. 
  10. Herath, H. M. P. I. K., R. U. Halwatura and G. Y. Jayasinghe(2018) Evaluation of green infrastructure effects on tropical Sri Lankan urban context as an urban heat island adaptation strategy. Urban Forestry & Urban Greening 29: 212-222.  https://doi.org/10.1016/j.ufug.2017.11.013
  11. Hoffmann, P., O. Krueger and K. H. Schlunzen(2012) A statistical model for the urban heat island and its application to a climate change scenario. International Journal of Climatology 32(8): 1238-1248.  https://doi.org/10.1002/joc.2348
  12. Hsieh, C. M. and H. C. Huang(2016) Mitigating urban heat islands: A method to identify potential wind corridor for cooling and ventilation. Computers, Environment and Urban Systems 57: 130-143.  https://doi.org/10.1016/j.compenvurbsys.2016.02.005
  13. Jeong, D. I.(2016) Comparison of Outdoor Thermal Comfort Using the in-situ Measurements and Microclimate Modeling. Dissertation, Changwon Univ. 
  14. Jiang, Y., D. Song, T. Shi and X. Han(2018) Adaptive analysis of green space network planning for the cooling effect of residential blocks in summer: A case study in Shanghai. Sustainability 10(9): 3189. 
  15. Jiao, M., W. Zhou, Z. Zheng, J. Wang and Y. Qian(2017) Patch size of trees affects its cooling effectiveness: A perspective from shading and transpiration processes. Agricultural and Forest Meteorology 247: 293-299.  https://doi.org/10.1016/j.agrformet.2017.08.013
  16. Jo, S. M., C. J. Hyun and S. K. Park(2017) Analysis of the influence of street trees on human thermal sensation in summer. Journal of the Korean Institute of Landscape 45(5): 105-112. 
  17. Kai, Z.(2015) SOLWEIG-Impacts of vegetation on mean radiant temperature in Singapore. 
  18. Ketterer, C. and A. Matzarakis(2015) Comparison of different methods for the assessment of the urban heat island in Stuttgart, Germany. International Journal of Biometeorology 59(9): 1299-1309.  https://doi.org/10.1007/s00484-014-0940-3
  19. Kim, B. S., Y. K. Min, B. C. Min and J. H. Kim(2011) The changes of psychological and physiological emotional responses according to change of the index of predicted mean vote (PMV) due to air conditioning types. Science of Emotion and Sensibility 14(4): 645-652. 
  20. Kim, G. H., S. B. Kim and E. H. Jung(2004) A study on green net-work construction for urban heat island mitigation in Dalseo district, Daegu metropolitan city. Journal of Environmental Science International 13(6): 527-535.  https://doi.org/10.5322/JES.2004.13.6.527
  21. Kim, J. S. and J. E. Kang(2018) Effects of compact spatial characteristics on the urban thermal environment. Urban Design Institute of Korea 19(1): 21-36.  https://doi.org/10.38195/judik.2018.02.19.1.21
  22. Kim, W. S. and H. Y. Kim(2003) Impact analysis of tall apartment buildings on microclimate using computer-based simulation technique. Urban Design Institute of Korea 12(3): 21-37. 
  23. Kwon, Y. J., D. K. Lee and S. K. Ahn(2019) Urban street planting scenarios simulation for micro-scale urban heat island effect mitigation in Seoul. Journal of Environmental Impact Assessment 28(1): 23-34.  https://doi.org/10.14249/EIA.2019.28.1.23
  24. Lee, C. H. and J. H. Chung(2017) A study on development of the housing guidelines for climate change response -Focused on extreme heat and heat island effect-. Journal of the Architectural Institute of Korea Planning & Design 33(4): 77-89. 
  25. Lim, H. W., S. M. Jo and S. K. Park(2022) Analysis of thermal environment modification effects of street trees depending on planting types and street directions in summertime using ENVI-Met simulation. Journal of the Korean Institute of Landscape Architecture 50(2): 1-22.  https://doi.org/10.9715/KILA.2022.50.2.001
  26. Matzarakis, A., H. Mayer and M. G. Iziomon(1999) Applications of a universal thermal index: Physiological equivalent temperature. International Journal of Biometeorology 43(2): 76-84.  https://doi.org/10.1007/s004840050119
  27. Mun, G. W., S. G. Jeong, G. H. Park, B. G. Song, C. G. Jang and J. Y. Sin(2015) 도시녹화가 열쾌적성 개선에 미치는 효과 분석. In Proceedings of the Korean Institute of Landscape Architecture Conference (pp. 73-74). 
  28. Oke, T. R., G. Mills, A. Christen and J. A. Voogt(2017) Urban Climates. Cambridge University Press. 
  29. Park, C. Y., D. K. Lee, E. G. Kwon and M. J. Her(2017) Green-infra strategies for mitigating urban heat island. Journal of the Korea Society of Environmental Restoration Technology 20(5): 67-81.  https://doi.org/10.13087/KOSERT.2017.20.5.67
  30. Ryu, B. R. and E. A. Ko(2010) Wind simulation and optimal building allocation using Envi-met 3-D model. Journal of the Korean Society for Environmental Technology 11(4): 207-215. 
  31. Salata, F., I. Golasi, R. de Lieto Vollaro and A. de Lieto Vollaro(2016) Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data. Sustainable Cities and Society 26: 318-343.  https://doi.org/10.1016/j.scs.2016.07.005
  32. Simon, H.(2016) Modeling urban microclimate: Development, implementation and evaluation of new and improved calculation methods for the urban microclimate model ENVI-met. Doctoral Dissertation, Mainz, Univ., Diss. 
  33. Sodoudi, S., H. Zhang, X. Chi, F. Muller and H. Li(2018) The influence of spatial configuration of green areas on microclimate and thermal comfort. Urban Forestry & Urban Greening 34: 85-96.  https://doi.org/10.1016/j.ufug.2018.06.002
  34. Song, B. G., K. H. Park and S. G. Jung(2014) Validation of ENVI-met model with in situ measurements considering spatial characteristics of land use types. Journal of the Korean Association of Geographic Information Studies 17(2):156-172.  https://doi.org/10.11108/KAGIS.2014.17.2.156
  35. Tsoka, S., A. Tsikaloudaki and T. Theodosiou(2018) Analyzing the ENVI-met microclimate model's performance and assessing cool materials and urban vegetation applications -A review. Sustainable Cities and Society 43: 55-76.  https://doi.org/10.1016/j.scs.2018.08.009
  36. Yu, Z., G. Yang and H. Vejre(2019) How to (quantitatively) use the smallest green patch to achieve the best cooling effect in urban climate adaptive planning? AGU Fall Meeting. 
  37. http://data.seoul.go.kr