• Title/Summary/Keyword: Mission planning

Search Result 234, Processing Time 0.023 seconds

Contents Analysis of Management Philosophy - focus on Mission and Vision of Fisheries Business (국내 수산관련 기업의 주요 경영철학에 대한 내용분석 - 상장사의 미션과 비전을 중심으로)

  • Lee, Dong-Ho
    • The Journal of Fisheries Business Administration
    • /
    • v.44 no.3
    • /
    • pp.85-101
    • /
    • 2013
  • The foundation of any association or organization should include a mission, a vision, and strategic goals. Vision and mission are frequently discussed in academic and practitioner literature and accepted as key items in strategic decisions. But in these days, the words"change and crisis"are what companies are familiar with. They bringing about uncertainty led the companies to search for new strategies in order to specify their directions. In case of making proper direction for some organization, the role of management philosophy is most important. And also identifying, clarifying and communicating the management philosophy is now a major part of the planning process. This study examines the characteristics of management philosophy items which including mission and vision in Korean fisheries business with contents analysis. in order to achieve these purpose, this research analysing the mission, vision and CEO's greeting with the social network analysis(SNA) which is the most dominant technique in contents analysis. The SNA is evaluated that most popular, rigorous and firm methodology for analyzing, examining and revising some concepts or objects in the context of semantics. The findings of social network analysis show that some critical problems are existed. First, most of the fisheries company did not fully announce the mission and vision irrespective of one's size or scale. Second, there is some coverage insufficiency of stakeholders in mission and vision. And cutting edge topics like environmental problem, corporate social responsibility, consumer sovereignty are not included in management philosophy.

LUNAR ECLIPSE ANALYSIS FOR KOMPSAT (다목적실용위성의 월식 현상 분석)

  • 김응현;이상률;김학정
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.449-458
    • /
    • 1998
  • The Korea Muliti-Purpose Satellite(KOMPSAT) uses a sun-synchronous orbit with an altitude 685km as mission orbit and undergoes earth eclipses and infrequently lunar eclipses. Lunar eclipses occur when the moon is located between the sun and the satellite and blocks partially or fully the sunlight. The eclipse causes the satellite to increase battery discharge times and affects satellite lifetime and mission operation. The KOMPSAT lunar eclipses can cause additional effects to energy balance and battery disc of the KOMPSAT lunar eclipse for 3 year mission lifetime. Also mission planning scenario is presented for lunar eclipses at the KOMPSAT Grouns Station(KGS).

  • PDF

A Study on the Formulation of Missions and Visions in the National Library of Korea (국립중앙도서관의 사명과 역할 수립에 관한 고찰)

  • Kwack Dong-Chul
    • Journal of Korean Library and Information Science Society
    • /
    • v.35 no.3
    • /
    • pp.205-227
    • /
    • 2004
  • The purpose of this study is to propose the appropriate strategies for establishing the mission and roles of National Central Library. For this purpose, examined are the following aspects: (1) how and by whom the mission and roles of National Central Library have been defined, and what are included; (2) what are the missions and roles taken by its counterparts in other developed countries, and recommended by international organizations; and (3) how National Central Library, as the center of national information resources, can be further committed and developed to be the key institution in the knowledge-information society, by re-evaluating and establishing its roles and mission.

  • PDF

An Optimal Mission Assignment Model for Determining a Minimum Required Level of Nuclear-powered Submarines (원자력 추진 잠수함 최소 소요량 결정을 위한 임무 할당 최적화 모델)

  • Lee, Dong-Gyun;Park, Seung-Joo;Lee, Jinho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.235-245
    • /
    • 2018
  • This study first analyzes the necessity and the validity of procuring nuclear-powered submarines, and presents an optimization model as an integer program to determine a minimum required level of them. For an optimization model, we characterize a submarine's mission, ability and availability, and apply these to the model by constraints. Then, we assign the submarines available currently and the nuclear-powered submarines, that will be newly introduced, to the predefined missions over the planning time periods in a way that the number of nuclear-powered submarines be minimized. Randomly generated missions are employed to solve a mission assignment problem, and the results show that our integer programming model provides an optimal solution as designed, and this can provide a guideline for other weapon system procurement processes.

An Automated Planning Method for Autonomous Behaviors of Computer Generated Forces in War games (워게임에서 가상군의 자율적 행위를 위한 자동계획 기법)

  • Choi, Dae-Hoe;Cho, Jun-Ho;Kim, Ik-Hyun;Park, Jung-Chan;Jung, Sung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.11-18
    • /
    • 2011
  • This paper proposes a novel planning method for computer generated forces (CGFs) in war games that plans the behaviors of CGFs according to a given mission and situations. CGFs which are received their missions first plan their tasks for accomplishing the mission and then plan their behaviors for accomplishing each task. After that, they execute their planned behaviors considering the conditions of environments (in other words situations). The tasks and behaviors are hierarchically composed and include start conditions for beginning those and termination conditions for stopping those. CGFs first check whether the start condition of the planned behavior for accomplishing a task is satisfied or not in some degree and perform the behavior if satisfied continuously until the termination condition of the behavior will be met. If the termination condition is satisfied, then they check the start condition of the next planned behavior. This process will be repeated for accomplishing the mission. If the situations of CGFs are different by changing the environments from those of planning time, it may cause the start condition of the planned behavior to be dissatisfied. In this case, CGFs can decide a new behavior using fuzzy rule base. We realized our planning system and tested CGFs with a scenario. Experimental results showed that our system worked well and actively coped with situation changes. It will be possible to make CGFs that can do more autonomous behaviors if we continually develop our method.

Analysis of Delta-V Losses During Lunar Capture Sequence Using Finite Thrust

  • Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Lee, Joo-Hee;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.203-216
    • /
    • 2011
  • To prepare for a future Korean lunar orbiter mission, semi-optimal lunar capture orbits using finite thrust are designed and analyzed. Finite burn delta-V losses during lunar capture sequence are also analyzed by comparing those with values derived with impulsive thrusts in previous research. To design a hypothetical lunar capture sequence, two different intermediate capture orbits having orbital periods of about 12 hours and 3.5 hours are assumed, and final mission operation orbit around the Moon is assumed to be 100 km altitude with 90 degree of inclination. For the performance of the on-board thruster, three different performances (150 N with $I_{sp}$ of 200 seconds, 300 N with $I_{sp}$ of 250 seconds, 450 N with $I_{sp}$ of 300 seconds) are assumed, to provide a broad range of estimates of delta-V losses. As expected, it is found that the finite burn-arc sweeps almost symmetric orbital portions with respect to the perilune vector to minimize the delta-Vs required to achieve the final orbit. In addition, a difference of up to about 2% delta-V can occur during the lunar capture sequences with the use of assumed engine configurations, compared to scenarios with impulsive thrust. However, these delta-V losses will differ for every assumed lunar explorer's on-board thrust capability. Therefore, at the early stage of mission planning, careful consideration must be made while estimating mission budgets, particularly if the preliminary mission studies were assumed using impulsive thrust. The results provided in this paper are expected to lead to further progress in the design field of Korea's lunar orbiter mission, particularly the lunar capture sequences using finite thrust.

Aircraft Path Planning Considering Pop-up Threats Using Framed-Quadtree Wavefront Propagation and Navigation Function (Framed-Quadtree 파면전파 기법과 항법함수 기법을 이용한 항공기 위협회피 궤적 설계)

  • Kim, Pil-Jun;Choi, Jong-Uk;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.918-926
    • /
    • 2007
  • Military aircrafts usually operate at the area with lots of threats such as radars and surface-to-air missiles. Aircraft also faces with the unexpected or pop-up threats. Under this environment, a safe flight path should be generated to lead a mission successful. In this paper, a new path planning algorithm is proposed to provide less dangerous flight path efficiently. Of many path planning algorithms, a potential method is considered, because it has advantages of computation efficiency and smooth path generation. Trajectory generation under the condition of maximum range is studied so that the aircraft may reach the target area without refueling. The algorithm to cope with an unexpected situation is also proposed by adopting the concept of initial direction vector, additional force, and a new mapping function. The performance of the proposed algorithms is demonstrated for SEAD (Suppression of Enemy Air Defences) mission by numerical simulation.

A Local Path Planning Algorithm considering the Mobility of UGV based on the Binary Map (무인차량의 주행성능을 고려한 장애물 격자지도 기반의 지역경로계획)

  • Lee, Young-Il;Lee, Ho-Joo;Ko, Jung-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.171-179
    • /
    • 2010
  • A fundamental technology of UGV(Unmanned Ground Vehicle) to perform a given mission with success in various environment is a path planning method which generates a safe and optimal path to the goal. In this paper, we suggest a local path-planning method of UGV based on the binary map using world model data which is gathered from terrain perception sensors. In specially, we present three core algorithms such as shortest path computation algorithm, path optimization algorithm and path smoothing algorithm those are used in the each composition module of LPP component. A simulation is conducted with M&S(Modeling & Simulation) system in order to verify the performance of each core algorithm and the performance of LPP component with scenarios.