• Title/Summary/Keyword: Mission data

Search Result 911, Processing Time 0.027 seconds

KOMPSAT-2 MSC DCSU Recording Mechanism

  • Lee J.T.;Lee S.G.;Lee S.T.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.475-478
    • /
    • 2004
  • The DCSU performs satellite payload data acquisition and storage functions before sending the data to the ground station. While imaging, the DCSU makes a file per each input channel and store into memory stack. For the successful imaging mission, proper DCSU mission parameters should be uploaded before the mission such as file name, file size, output channel for the download transmission and so on. This paper will describe the DCSU recording mechanism and some notices that might be helpful for the ground operators.

  • PDF

Critical Design of MIMAN CubeSat for Aerosol Monitoring Mission (미세먼지 관측 임무를 위한 MIMAN 큐브위성 상세 설계)

  • Jin, Sungmin;Kang, Dae-Eun;Kim, Geuk-Nam;Kim, Naeun;Kim, Young-Eon;Kim, Pureum;An, Seungmin;Ryu, Han-Gyeol;Park, Sang-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.1027-1035
    • /
    • 2021
  • We presents a design of 3U cubesat MIMAN (Monochrome imaging for monitoring aerosol by nano-satellite) for aerosol monitoring mission with high spatial resolution. The main objective of MIMAN mission is to take images of aerosols around Korea and to provide auxiliary data for GK 2B cloud masking. For this mission, we derived mission requirements and constraints for the MIMAN mission. We designed the mission architecture and concept of operations. To reduce risk factors in space operation, we considered the safety of the communication. In every operation modes, UHF communication is available so that the cubesat can operate based on the ground commands. So, we can handle every problem at the ground station during mission operations. Based on the mission and concept of operations, we confirmed that the system design satisfied the system requirements. We designed the system interface considering data flow of each hardware, and evaluated the safety of the system with system budget analysis.

SYSTEM DESIGN OF THE COMS

  • Lee Ho-Hyung;Choi Seong-Bong;Han Cho-Young;Chae Jong-Won;Park Bong-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.645-648
    • /
    • 2005
  • The COMS(Communication, Ocean and Meteorological Satellite), a multi-mission geo-stationary satellite, is being developed by KARl. The first mission of the COMS is the meteorological image and data gathering for weather forecast by using a five channel meteorological imager. The second mission is the oceanographic image and data gathering for marine environment monitoring around Korean Peninsula by using an eight channel Geostationary Ocean Color Imager(GOCI). The third mission is newly developed Ka-Band communication payload certification test in space by providing communication service in Korean Peninsula and Manjurian area. There were many low Earth orbit satellites for ocean monitoring. However, there has never been any geostationary satellite for ocean monitoring. The COMS is going to be the first satellite for ocean monitoring mission on the geo-stationary orbit. The meteorological image and data obtained by the COMS will be distributed to end users in Asia-Pacific area and it will contribute to the improved weather forecast.

  • PDF

THE RELATION BETWEEN HPA AND COMS MULTI-CARRIER

  • Park Durk-Jong;Yang Hyung-Mo;Hyun Dae-Wan;Ahn Sang-Il;Kim Eun-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.564-566
    • /
    • 2005
  • The relation between HPA (High Power Amplifier) and COMS (Communication Ocean Meteorological Satellite) multi-carrier is analyzed in this paper. MODAC (Meteorological and Ocean Data Application Center) has a primary mission to transmit processed data, HRIT (High Rate Information Transmission) and LRIT (Low Rate Information Transmission), which is normalized and calibrated by pre-processing. It is also replaced with the SOC (Satellite Operation Center) in emergency case and can transmit the command and ranging tones for operation of COMS. From the result of simulation with modelled HPA, it is found that the multi-carrier in one HPA can give rise to an inter-modulation which makes harmonic and spurious elements increase in-band. Under the environment of these increased parasitic elements, the degradation of multi-carrier's quality is estimated from the ratio of the amount of noise to total output power of HPA.

  • PDF

Optimal Path Planning Algorithm for Visiting Multiple Mission Points in Dynamic Environments (동적 변화 환경에서 다중 임무점 방문을 위한 최적 경로 계획 알고리즘)

  • Lee, Hohyeong;Chang, Woohyuk;Jang, Hwanchol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.379-387
    • /
    • 2019
  • The complexity of path planning for visiting multiple mission points is even larger than that of single pair path planning. Deciding a path for visiting n mission points requires conducting $n^2+n$ times of single pair path planning. We propose Multiple Mission $D^*$ Lite($MMD^*L$) which is an optimal path planning algorithm for visiting multiple mission points in dynamic environments. $MMD^*L$ reduces the complexity by reusing the computational data of preceding single pair path planning. Simulation results show that the complexity reduction is significant while its path optimality is not compromised.

A Mission Capability Measuring Methodology of Warship based on Vulnerability Assessment: Focused on Naval Engagement Level Analysis Model (취약성 평가 기반 함정 임무수행능력 측정 방법: 해군 교전급 분석모델을 중심으로)

  • Jeong-kwan Yang;Bong-seok Kim;Bong-wan Choi;Chong-su Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.218-228
    • /
    • 2023
  • Maintaining sea superiority through successful mission accomplishments of warships is being proved to be an important factor of winning a war, as in the Ukraine-Russia war. in order to ensure the ability of a warship to perform its duties, the survivability of the warship must be strengthened. In particular, among the survivability factors, vulnerability is closely related to a damage assessment, and these vulnerability data are used as basic data to measure the mission capability. The warship's mission capability is usually measured using a wargame model, but only the operational effects of a macroscopic view are measured with a theater level resolution. In order to analyze the effectiveness and efficiency of a weapon system in the context of advanced weapon systems and equipments, a warship's mission capability must be measured at the engagement level resolution. To this end, not the relationship between the displacement tonnage and the weight of warheads applied in the theater level model, but an engagement level resolution vulnerability assessment method that can specify physical and functional damage at the hit position should be applied. This study proposes a method of measuring a warship's mission capability by applying the warship vulnerability assessment method to the naval engagement level analysis model. The result can be used as basic data in developing engagement algorithms for effective and efficient operation tactics to be implemented from a single unit weapon system to multiple warships.

Cascode Low Noise Amplifiers with Coplanar Waveguide Structure for Wireless LAN Application

  • Kim, Jong-Ho;Kim, Ki-Byoung;Lee, Jong-Chul;Kim, Jong-Heon;Lee, Byungje;Kim, Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.1
    • /
    • pp.12-16
    • /
    • 2003
  • In this paper, low noise amplifiers with coplanar waveguide structure are presented for Wireless LAN data communication application. For comparison of microwave performance, LNAs of cascode type and balanced type using cascode cell with the same substrate and same bias conditions are designed and implemented. A cascode type of LNA shows the gain of 12.45 ㏈, input return loss of 11.63 ㏈, and noise figure of 1.52㏈. A balanced type of LNA using cascode cell shows the gain of 6.58 ㏈, input return loss of 16.6 ㏈, and noise figure of 1.18 ㏈.

Synchronization System for Time of Mission and Flight Computers over UAV Network

  • Lee, Won-Seok;Jang, Jun-Yong;Song, Hyoung-Kyu
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.387-393
    • /
    • 2021
  • This paper proposes a system to synchronize the time of computers over an unmanned aerial vehicle (UAV) network. With the proposed system, the UAVs can perform missions that require precise relative time. Also, data collected by UAVs can be fused precisely with synchronized time. In the system, to synchronize the time of all computers over the UAV network, two-step synchronization is performed. In the first step, the mission computers of the UAVs are synchronized through the server of the system. After the first step, the mission computers measure time offset between the time of the mission computers and the flight computers. The offset values are delivered to the server. In the second step, virtual time is determined by the server from the collected time offset. The measured offset is compensated by moving the synchronized time of mission computers to the reasonable virtual time. Since only the time of mission computers are controlled, any flight computers that use micro air vehicle link (MAVLink) protocol can be synchronized in the proposed system.

Atmospheric Effects during Solar Storms

  • Lee, J.H.;Choi, G.H.;Kim, J.W.;Seo, S.B.;Lee, S.H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.840-842
    • /
    • 2003
  • Recent satellite data have revealed a correlation between the Sun’s activities and the Earth’s atmosphere . Many scientists have been conjectured a more direct connections between solar variability and the Earth’s atmosphere from satellite data analysis. During solar storms, more energetic particles reach the Earth’s atmosphere and this phenomenon have effects on the Earth’s atmospheric environment. Consequently, scientists suggest that these variations will affect a global climate change. In this study, we investigate the confirmative research results of atmospheric effects due to solar activities, especially solar storms.

  • PDF

A Radar Performance Model for Mission Analyses of Missile Models (유도무기 임무 분석을 위한 레이더 성능 모델)

  • Kim, Jingyu;Woo, S.H. Arman
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.822-834
    • /
    • 2017
  • In M&S, radar model is a software module to identify position data of simulation objects. In this paper, we propose a radar performance model for simulations of air defenses. The previous radar simulations are complicated and difficult to model and implement since radar systems in real world themselves require a lot of considerations and computation time. Moreover, the previous radar simulations completely depended on radar equations in academic fields; therefore, there are differences between data from radar equations and data from real world in mission level analyses. In order to solve these problems, we firstly define functionality of radar systems for air defense. Then, we design and implement the radar performance model that is a simple model and deals with being independent from the radar equations in engineering levels of M&S. With our radar performance model, we focus on analyses of missions in our missile model and being operated in measured data in real world in order to make sure of reliability of our mission analysis as much as it is possible. In this paper, we have conducted case studies, and we identified the practicality of our radar performance model.