• Title/Summary/Keyword: Mission Plan

Search Result 205, Processing Time 0.018 seconds

Performance Verification Process for Introduction of Open Source Software -centered on introduction of Linux into the NEIS-

  • Kim Doo-Yeon;Kim Jong-Bae;Rhew Sung-Yul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.3
    • /
    • pp.59-68
    • /
    • 2006
  • Recently, introduction of Open Source Software into informatization of the government and public sector has been actively examined, however, Open Source Software is being rarely adopted due to the lack of verified and reliable data with regard to the criteria, process, performance and stability for introduction of Open Source Software. In this paper, the process, method and plan for performance verification for introduction of Open Source Software into mission critical systems of the government and public sector are suggested in order to solve the aforesaid problem Specially, a test system to judge whether or not to adopt Open Source Software in school affairs system of the NEIS(National Education Information System) of the Korean government was set up, and the method and process of performance verification by stage in addition to feasibility study were applied to the test system for verification. Based on the result of performance evaluation in the test system, the application of Linux to school affairs system of the NEIS is being successfully practiced. It is expected that this study will be a guideline to technical review process and performance verification method as necessary to introduce Open Source Software into the mission critical systems of government and public agencies.

  • PDF

Analysis of the Targeting Accuracy of KOMPSAT-1 EOC (아리랑위성1호EOC영상촬영의 지향정확도분석)

  • Jeon, Gap-Ho;Kim, Yun-Su;Seo, Du-Cheon
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.220-226
    • /
    • 2006
  • At present the KOMPSAT-1 is operating for seven years, though mission life time was only three years. We expect the KOMPSAT-1's mission for several years ahead, considering the KOMPSAT-1's current conditions. However, a question that the plan and the result was not equal have being arises. Recently, we attempted to take a picture of the Mount Everest. But we don't take a picture of the Mount Everest in the center of image. This paper make clear the difference between target center from operating commender and image center from received data, for the continual and stable KOMPSAT operation.

  • PDF

Operational Risk Assessment for Airworthiness Certification of Military Unmanned Aircraft Systems using the SORA Method

  • Namgung, Pyeong;Eom, Jeongho;Kwon, Taehwa;Jeon, Seungmok
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.64-74
    • /
    • 2021
  • Unmanned Aircraft Systems (UAS) are rapidly emerging not only as a key military power, such as surveillance and reconnaissance for military purposes but also as a new air transportation means in the form of Urban Air Mobility (UAM). Currently, airworthiness certification is carried out focused on the verification of technical standards for flight safety suitability of aircraft design in accordance with the Military Aircraft Flight Safety Certification Act and does not employ the model for operational risk assessment for mission areas and airspace. In this study, in order to evaluate the risk of the mission area from the perspective of the UAS operator, a risk assessment simulation has been conducted by applying the Specific Operations Risk Assessment (SORA) model to the operating environment of the Korean military UAS. Also, the validity of the SORA model has been verified through the analysis of simulation results, and a new application plan for airworthiness certification of the military unmanned aerial system has been presented.

Implementation and Verification of System Integration Laboratory for Multiple Unmanned Aerial Vehicle Operation and Control Technology using Manned Rotorcraft (유인회전익기에 의한 다수 무인기 운용통제기술의 통합검증환경 구현 및 검증)

  • Hyoung Jin Kim;Sang Eun Kwon;Young Wo Jo;Bong Gyu Kim;Eun Kyoung Go
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.133-143
    • /
    • 2023
  • This paper describes the system integration laboratory's requirement analysis, implementation, and verification for multiple-scenario unmanned aerial vehicle operation and control technology using a manned rotorcraft for Manned-Unmanned Teaming. System integration laboratory consists of manned rotorcraft flight simulation, unmanned aerial vehicle flight and mission equipment simulation, ground control system simulation for unmanned aerial vehicle control and change in the control authority between the ground control system and manned rotorcraft, and operation and control system for mission plan's writing and transmission. Each implemented simulation verified the requirements through software and hardware integration test.

A Study on the Analysis of the Vision Achievement and Social Status of the ABEEK (한국공학교육인증원의 2020 비전 달성도 및 사회적 위상 분석)

  • Han, Jiyoung
    • Journal of Engineering Education Research
    • /
    • v.27 no.2
    • /
    • pp.3-12
    • /
    • 2024
  • The purpose of this study was to evaluate how well the 2020 vision presented by the Accreditation Board for Engineering Education of Korea(ABEEK) had been achieved, and to objectively examine the social status. It was very necessary for the development of engineering education in Korea to provide room for improvement by diagnosing how well the ABEEK, one of the major engineering education communities, was achieving its own vision. In order to achieve the objectives of the study, research methods such as literature review, survey research, and expert advisory committee were used. To evaluate the level of achievement of the Vision 2020 of the ABEEK, the analysis was based on the response results of 61 people who had experience as a member of the steering committe. In addition, the vision and mission of the 23 countries that are currently signatory members of the Washington Accord were surveyed, and the social responsibility and financial independence of the 20 countries that joined the signatory member countries before 2020 were compared with each other. As a result of the analysis, the item of securing international equivalence in engineering education received the most positive evaluation, and the social compensation efforts for accreditied graduates received the least evaluation. The ABEEK was evaluated as having a medium level of social responsibility and a low level of financial independence. Based on the results of this research, we proposed ways the ABEEK to contribute to the improvement of Korean engineering education.

Study on the Thermal Design of Nuclear Battery for Lunar Mission (한국형 달 탐사용 원자력전지의 열제어 구조 연구)

  • Hong, Jintae;Son, Kwang-Jae;Kim, Jong-Bum;Park, Jong-Han;Ahn, Dong-Gyu;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.271-277
    • /
    • 2016
  • For a stable electric power supply in the space, nuclear batteries have been used as the main power source in a spacecraft owing to their long lifetime and high reliability. In accordance with the plan for lunar mission in Korea, nuclear batteries will supply electricity to the rover that needs to be developed. According to the information about the estimated payload, Korea Atomic Energy Research Institute started with the conceptual design based on the previous studies in USA and Russia. Because a nuclear battery converts the decay heat of the radioisotope into electricity, thermal design, radiation shield, and shock protection need to be considered. In this study, two types of nuclear batteries, radial type and axial type, were designed according to the alignment of the thermoelectric module. Heat transfer analyses were performed to compare their thermoelectric efficiency, and test mockups were fabricated to evaluate their performances.

Prediction of Atomic Oxygen Erosion for Coating Material of LEO Satellite's Solar Array by Using the Real Ram Direction Accumulation Method (실 궤도면 누적량 계산법을 활용한 원자산소의 저궤도위성 태양전지판 코팅재료 침식량 예측)

  • Kim, You-Gwang;Lee, Sang-Taek;Baek, Myung-Jin;Lee, Suk-Hoon
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.1-5
    • /
    • 2017
  • This objective of this study is an effort to predict atomic oxygen (ATOX) erosion as ot affects coating material(s) of LEO satellite's solar array by implementing the 'real ram direction accumulation method'. We observed the difference of ATOX Fluence between the previous 'Maximum worst case estimation method' and 'Real ram direction accumulation method' and we plan to implement these findings for the purpose of evaluating the level of compliance for design submitted by solar array suppliers. We used the SPENVIS(Space Environment Information System) served by ESA based on assumption orbit information, and applied the satellite orbit calculation software for calculating the ATOX Flux crushed solar array in real orbit surface.

Uncertainty Requirement Analysis for the Orbit, Attitude, and Burn Performance of the 1st Lunar Orbit Insertion Maneuver

  • Song, Young-Joo;Bae, Jonghee;Kim, Young-Rok;Kim, Bang-Yeop
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.323-333
    • /
    • 2016
  • In this study, the uncertainty requirements for orbit, attitude, and burn performance were estimated and analyzed for the execution of the $1^{st}$ lunar orbit insertion (LOI) maneuver of the Korea Pathfinder Lunar Orbiter (KPLO) mission. During the early design phase of the system, associate analysis is an essential design factor as the $1^{st}$ LOI maneuver is the largest burn that utilizes the onboard propulsion system; the success of the lunar capture is directly affected by the performance achieved. For the analysis, the spacecraft is assumed to have already approached the periselene with a hyperbolic arrival trajectory around the moon. In addition, diverse arrival conditions and mission constraints were considered, such as varying periselene approach velocity, altitude, and orbital period of the capture orbit after execution of the $1^{st}$ LOI maneuver. The current analysis assumed an impulsive LOI maneuver, and two-body equations of motion were adapted to simplify the problem for a preliminary analysis. Monte Carlo simulations were performed for the statistical analysis to analyze diverse uncertainties that might arise at the moment when the maneuver is executed. As a result, three major requirements were analyzed and estimated for the early design phase. First, the minimum requirements were estimated for the burn performance to be captured around the moon. Second, the requirements for orbit, attitude, and maneuver burn performances were simultaneously estimated and analyzed to maintain the $1^{st}$ elliptical orbit achieved around the moon within the specified orbital period. Finally, the dispersion requirements on the B-plane aiming at target points to meet the target insertion goal were analyzed and can be utilized as reference target guidelines for a mid-course correction (MCC) maneuver during the transfer. More detailed system requirements for the KPLO mission, particularly for the spacecraft bus itself and for the flight dynamics subsystem at the ground control center, are expected to be prepared and established based on the current results, including a contingency trajectory design plan.

Study of the Post Mission Disposal Maneuver for KOMPSAT-2 (다목적실용위성 2호의 폐기기동 연구)

  • Seong, Jaedong;Jung, Okchul;Chung, Daewon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.1037-1048
    • /
    • 2018
  • In this paper, we investigated the international guidelines and actual disposal maneuver cases to prepare KOMPSAT-2 post mission disposal. And then, disposal maneuver plan was established using current propellant of KOMPSAT-2 and verification was also performed to find out whether the international guidelines are satisfied. As a result, the lifetime of KOMPSAT-2 was 3.6 years when 45kg propellant was used to decrease perigee altitude to 300km. And if more than 14.5kg propellant consumed for same strategy, KOMPSAT-2 can satisfy the international guidelines. Finally, re-entry survivability analysis was performed and it represented that heat resistant objects, such as propellant tank and reaction wheel, could be survived but total ground casualty probability was less than international guidelines.

Ground Tracking Support Condition Effect on Orbit Determination for Korea Pathfinder Lunar Orbiter (KPLO) in Lunar Orbit

  • Kim, Young-Rok;Song, Young-Joo;Park, Jae-ik;Lee, Donghun;Bae, Jonghee;Hong, SeungBum;Kim, Dae-Kwan;Lee, Sang-Ryool
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.237-247
    • /
    • 2020
  • The ground tracking support is a critical factor for the navigation performance of spacecraft orbiting around the Moon. Because of the tracking limit of antennas, only a small number of facilities can support lunar missions. Therefore, case studies for various ground tracking support conditions are needed for lunar missions on the stage of preliminary mission analysis. This study analyzes the ground supporting condition effect on orbit determination (OD) of Korea Pathfinder Lunar Orbiter (KPLO) in the lunar orbit. For the assumption of ground support conditions, daily tracking frequency, cut-off angle for low elevation, tracking measurement accuracy, and tracking failure situations were considered. Two antennas of deep space network (DSN) and Korea Deep Space Antenna (KDSA) are utilized for various tracking conditions configuration. For the investigation of the daily tracking frequency effect, three cases (full support, DSN 4 pass/day and KDSA 4 pass/day, and DSN 2 pass/day and KDSA 2 pass/day) are prepared. For the elevation cut-off angle effect, two situations, which are 5 deg and 10 deg, are assumed. Three cases (0%, 30%, and 50% of degradation) were considered for the tracking measurement accuracy effect. Three cases such as no missing, 1-day KDSA missing, and 2-day KDSA missing are assumed for tracking failure effect. For OD, a sequential estimation algorithm was used, and for the OD performance evaluation, position uncertainty, position differences between true and estimated orbits, and orbit overlap precision according to various ground supporting conditions were investigated. Orbit prediction accuracy variations due to ground tracking conditions were also demonstrated. This study provides a guideline for selecting ground tracking support levels and preparing a backup plan for the KPLO lunar mission phase.