• Title/Summary/Keyword: Mission Analysis

Search Result 987, Processing Time 0.029 seconds

A Deep Space Orbit Determination Software: Overview and Event Prediction Capability

  • Kim, Youngkwang;Park, Sang-Young;Lee, Eunji;Kim, Minsik
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.139-151
    • /
    • 2017
  • This paper presents an overview of deep space orbit determination software (DSODS), as well as validation and verification results on its event prediction capabilities. DSODS was developed in the MATLAB object-oriented programming environment to support the Korea Pathfinder Lunar Orbiter (KPLO) mission. DSODS has three major capabilities: celestial event prediction for spacecraft, orbit determination with deep space network (DSN) tracking data, and DSN tracking data simulation. To achieve its functionality requirements, DSODS consists of four modules: orbit propagation (OP), event prediction (EP), data simulation (DS), and orbit determination (OD) modules. This paper explains the highest-level data flows between modules in event prediction, orbit determination, and tracking data simulation processes. Furthermore, to address the event prediction capability of DSODS, this paper introduces OP and EP modules. The role of the OP module is to handle time and coordinate system conversions, to propagate spacecraft trajectories, and to handle the ephemerides of spacecraft and celestial bodies. Currently, the OP module utilizes the General Mission Analysis Tool (GMAT) as a third-party software component for high-fidelity deep space propagation, as well as time and coordinate system conversions. The role of the EP module is to predict celestial events, including eclipses, and ground station visibilities, and this paper presents the functionality requirements of the EP module. The validation and verification results show that, for most cases, event prediction errors were less than 10 millisec when compared with flight proven mission analysis tools such as GMAT and Systems Tool Kit (STK). Thus, we conclude that DSODS is capable of predicting events for the KPLO in real mission applications.

Unmanned Lunar Exploration Failure Case Analysis (해외 무인 달 탐사 실패 사례 분석)

  • Yang, Jeong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.233-242
    • /
    • 2020
  • The history of mankind's lunar exploration began in 1958 with the United States of America "Pioneer 0" mission. In 1950s~1970s, the United States of America and Union of Soviet Socialist Republics carried out missions and experienced numerous failures to explore the moon. Since the 1990s, Japan, Europe, China and other Advanced country in Space technology have started to explore the moon and in 2016, Korea began to develop the lunar orbiter for lunar exploration. This paper analyzed the failure cases and causes of the lunar exploration in the USA and the USSR in the 1950s~1970s according to the mission purpose. Examples of mission delays, cancel, and failures that occurred during lunar exploration in post-1990s were presented. Through the investigation and analysis, this paper is intended to serve as a reference of the lunar exploration mission that Korea is working on or will be performing in the future.

Numerical Analysis of Nozzle Plume Flow-Fields at Various Flight Conditions for Infrared Signature Investigation (IR 신호 분석을 위한 비행 조건에 따른 노즐 열유동장 해석)

  • Chun, S.H.;Yang, Y.R.;Moon, H.;Kim, J.Y.;Myong, R.S.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.601-604
    • /
    • 2011
  • Plume flow-fields of aircraft nozzles are numerically investigated at various flight conditions for infrared signature analysis. A mission profile of subsonic unmanned combat aerial vehicle is considered for the requirement of each mission, associated engine and nozzles are selected through a performance analysis. Numerical results of nozzle plume flow-fields using a CFD code are analyzed in terms of thrust, maximum temperature. It is shown that maximum temperature increase for lower altitude and higher Mach number.

  • PDF

Development of Autonomous Aerial Target System Applying the Modular Platform (모듈형 플랫폼을 적용한 자율비행 무인표적기 시스템 개발)

  • Kim, Taewook
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.3
    • /
    • pp.109-116
    • /
    • 2022
  • A modular platform development technique was proposed to minimize development cost and development period by utilizing the already developed unmanned Aerial target AVT, which has been operated and verified for many years. New Mission Profile was designed and structural analysis was performed through finite element analysis (FEA) by analyzing mission requirements for visual short-range, non-visible mid-range, and long-range targets. The targets are used for guided missile anti-aircraft training. In addition, avionics systems including flight control computers for autonomous flights were developed to verify their conformance by performing launcher take-off tests with rapid acceleration changes and autonomous flight tests at a maximum speed of 300km per hour.

A Model for the Optimal Mission Allocation of Naval Warship Based on Absorbing Markov Chain Simulation (흡수 마코프 체인 시뮬레이션 기반 최적 함정 임무 할당 모형)

  • Kim, Seong-Woo;Choi, Kyung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.558-565
    • /
    • 2021
  • The Republic of Korea Navy has deployed naval fleets in the East, West, and South seas to effectively respond to threats from North Korea and its neighbors. However, it is difficult to allocate proper missions due to high uncertainties, such as the year of introduction for the ship, the number of mission days completed, arms capabilities, crew shift times, and the failure rate of the ship. For this reason, there is an increasing proportion of expenses, or mission alerts with high fatigue in the number of workers and traps. In this paper, we present a simulation model that can optimize the assignment of naval vessels' missions by using a continuous time absorbing Markov chain that is easy to model and that can analyze complex phenomena with varying event rates over time. A numerical analysis model allows us to determine the optimal mission durations and warship quantities to maintain the target operating rates, and we find that allocating optimal warships for each mission reduces unnecessary alerts and reduces crew fatigue and failures. This model is significant in that it can be expanded to various fields, not only for assignment of duties but also for calculation of appropriate requirements and for inventory analysis.

Implementation and Performance Analysis of High-availability System for Mission Computer (임무컴퓨터를 위한 고가용 시스템의 구현 및 성능분석)

  • Jeong, Jae-Yeop;Park, Seong-Jong;Lim, Jae-Seok;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.8
    • /
    • pp.47-56
    • /
    • 2008
  • MC(Mission Computer) performs important function in avionics system which tactic data processing, image processing and managing navigation system etc. In general, the fault of SPOF(Single Point Of Failure) in unity system can lead to failure of whole system. It can cause a failure of a mission and also can threaten to the life of the pilot. So, in this paper, we design the HA(Hight-availability) system so that dealing with the failure. And we use HA software like Heartbeat, Fake, DRBD and Bonding to manage HA system. Also we analyze the performance of HA system using the FDT(Fault Detection Time) for fast fault detection and MTTR(Mean Time To Repair) for mission continuity.

Establishment for Efficiency Air-To-Ground Air Operation Model in Link-16 (Link-16 기반의 효율적인 공대지 항공작전 모델 설계)

  • Lee, Hyeong-Heon;Jang, Hyeong-Jun;Kim, Yeong-Gu;Lim, Jae-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.861-868
    • /
    • 2010
  • As CAS, X-ATK, and INT models considered as the most typical Air-to-Ground operation models in ROKAF are mainly designed as the voice-centered system between aircraft and ground control facilities, it is critical to newly develop the Link-16 based model for the ROK-US combined operation between F-15K, AWACS, M-SAM, and KDX-III equipped with Link-16. Former studies had been limited to the CAS operation, and they had mainly focused on reducing the voice transmission time to exchange the information between each mission step with maintaining existing operation steps. Therefore, this paper makes up the weak point in former studies, thereby designing new Air-to-Ground operation model for CAS, X-ATK, INT mission using Enterprise Architecture OV6c, which enables both aircraft and ground control facilities or between aircraft to obtain the real-time information on the location, identification, armament and the real-time image data through the broadcasting function. Based on the analysis of new operation model, we come to a conclusion that by simultaneously exchanging the information on mission between nodes concerned through the broadcasting function of Link-16. It is possible to cut down superfluous steps among the mission steps, and to reduce the mission time. It is clear that it gives rise to improve the battle efficiency and the decision-making tempo as well as the battlefield situational awareness.

A Study on Mission Command Characteristics from the Perspective of the South Korean Military's MZ Generation - Focusing on the German Military's Mission Command - (한국군 MZ세대 관점에서 바라본 임무형 지휘 특성 고찰 - 독일군 임무형 지휘 중심으로 -)

  • Hee-Hyun Shin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.409-413
    • /
    • 2023
  • In today's military, significant efforts are being made to achieve organizational effectiveness by adapting to the changing characteristics of its members. Currently, South Korea's military organizations, including division-level and below, are primarily composed of the MZ generation, which places great importance on personal satisfaction and values. They believe it is unfair if others do not acknowledge their preferences and opinions. Therefore, there is a need for the military to improve various command methods and organizational culture in line with the characteristics of these organizational members. This study analyzed the characteristics and key elements of mission command in the German military, a militarily advanced country. By examining the case of the German military, we should consider and adopt the adoption of a 'mission command' system that suits the reality of the South Korean military organization, with a focus on the MZ generation, which constitutes the core of our military organization.

Analysis of On-orbit Thermal Environment of Earth Orbit Satellite during Mission Lifetime (지구궤도 인공위성의 임무기간 중 궤도 열 환경 분석)

  • Kang, Soojin;Yun, Jihyeon;Jung, Changhoon;Park, Sungwoo
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.36-43
    • /
    • 2020
  • The start of satellite thermal design was to predict the worst operating environment through analysis of the thermal environment of the operation orbit. Because the satellites have different types of operating trajectories for their mission, the exposed thermal environment also varies. Thus, it is necessary to analyze in consideration of the orbital conditions, and a design was performed to guarantee thermal stability for the worst case defined through the analysis. The orbital thermal environmental analysis required an understanding of the basic orbit mechanics and the heat exchange relationship between the space environment and satellite. The purpose of this paper was to provide an understanding of the orbital thermal environment analysis by providing basic data on the space thermal environment in the earth-orbit and describing thermal relations that calculate the amount of space heat inflow into satellites. Additionally, an example of a virtual satellite shows the overall process of analyzing the orbital thermal environment during a mission lifetime.

Requirement Analysis of Navigation System for Lunar Lander According to Mission Conditions (임무조건에 따른 달 착륙선 항법시스템 요구성능 분석)

  • Park, Young Bum;Park, Chan Gook;Kwon, Jae Wook;Rew, Dong Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.734-745
    • /
    • 2017
  • The navigation system of lunar lander are composed of various navigation sensors which have a complementary characteristics such as inertial measurement unit, star tracker, altimeter, velocimeter, and camera for terrain relative navigation to achieve the precision and autonomous navigation capability. The required performance of sensors has to be determined according to the landing scenario and mission requirement. In this paper, the specifications of navigation sensors are investigated through covariance analysis. The reference error model with 77 state vector and measurement model are derived for covariance analysis. The mission requirement is categorized as precision exploration with 90m($3{\sigma}$ ) landing accuracy and area exploration with 6km($3{\sigma}$ ), and the landing scenario is divided into PDI(Powered descent initiation) and DOI(Deorbit initiation) scenario according to the beginning of autonomous navigation. The required specifications of the navigation sensors are derived by analyzing the performance according to the sensor combination and landing scenario.