• 제목/요약/키워드: Missing Data

검색결과 1,302건 처리시간 0.028초

A mathematical model to recover missing monitoring data of foundation pit

  • Liu, Jiangang;Zhou, Dongdong;Liu, Kewen
    • Geomechanics and Engineering
    • /
    • 제9권3호
    • /
    • pp.275-286
    • /
    • 2015
  • A new method is presented to recover missing deformation data of lateral walls of foundation pit when the monitoring is interrupted; the method is called Dynamic Mathematical Model - Parameter Interpolation. The deformation of lateral walls of foundation pit is mainly affected by the type of supporting structure and the situation of constraints, therefore, this paper mainly studies the two different kinds of variation law of deep horizontal displacement when the lateral walls are constrained or not, proposes two dynamic curve models of normal distribution type and logarithmic type, deals with model parameters by interpolating and obtains the parameters of missing data, then missing monitoring data could be Figured out by these parameters. Compared with the result from the common average method which is used to recover missing data, in the upper 2/3 of the inclinometer tube, the result by using this method is closer to the actual monitoring data, in the lower 1/3 part of the inclinometer tube, the result from the common average method is closer to the actual monitoring data.

RAM 분석 정확도 향상을 위한 야전운용 데이터의 이상값과 결측값 처리 방안 (Method of Processing the Outliers and Missing Values of Field Data to Improve RAM Analysis Accuracy)

  • 김인석;정원
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제17권3호
    • /
    • pp.264-271
    • /
    • 2017
  • Purpose: Field operation data contains missing values or outliers due to various causes of the data collection process, so caution is required when utilizing RAM analysis results by field operation data. The purpose of this study is to present a method to minimize the RAM analysis error of the field data to improve the accuracy. Methods: Statistical methods are presented for processing of the outliers and the missing values of the field operating data, and after analyzing the RAM, the differences between before and after applying the technique are discussed. Results: The availability is estimated to be lower by 6.8 to 23.5% than that before processing, and it is judged that the processing of the missing values and outliers greatly affect the RAM analysis result. Conclusion: RAM analysis of OO weapon system was performed and suggestions for improvement of RAM analysis were presented through comparison with the new and current method. Data analysis results without appropriate treatment of error values may result in incorrect conclusions leading to inappropriate decisions and actions.

Exploiting Patterns for Handling Incomplete Coevolving EEG Time Series

  • Thi, Ngoc Anh Nguyen;Yang, Hyung-Jeong;Kim, Sun-Hee
    • International Journal of Contents
    • /
    • 제9권4호
    • /
    • pp.1-10
    • /
    • 2013
  • The electroencephalogram (EEG) time series is a measure of electrical activity received from multiple electrodes placed on the scalp of a human brain. It provides a direct measurement for characterizing the dynamic aspects of brain activities. These EEG signals are formed from a series of spatial and temporal data with multiple dimensions. Missing data could occur due to fault electrodes. These missing data can cause distortion, repudiation, and further, reduce the effectiveness of analyzing algorithms. Current methodologies for EEG analysis require a complete set of EEG data matrix as input. Therefore, an accurate and reliable imputation approach for missing values is necessary to avoid incomplete data sets for analyses and further improve the usage of performance techniques. This research proposes a new method to automatically recover random consecutive missing data from real world EEG data based on Linear Dynamical System. The proposed method aims to capture the optimal patterns based on two main characteristics in the coevolving EEG time series: namely, (i) dynamics via discovering temporal evolving behaviors, and (ii) correlations by identifying the relationships between multiple brain signals. From these exploits, the proposed method successfully identifies a few hidden variables and discovers their dynamics to impute missing values. The proposed method offers a robust and scalable approach with linear computation time over the size of sequences. A comparative study has been performed to assess the effectiveness of the proposed method against interpolation and missing values via Singular Value Decomposition (MSVD). The experimental simulations demonstrate that the proposed method provides better reconstruction performance up to 49% and 67% improvements over MSVD and interpolation approaches, respectively.

결측치가 존재하는 유전형 자료에서의 연관불균형과 일배체형을 사용한 결측치 대치 방법 (A New Method for Imputation of Missing Genotype using Linkage Disequilibrium and Haplotype Information)

  • 박윤주;김영진;박정선;김규찬;고인송;정호열
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권2호
    • /
    • pp.99-107
    • /
    • 2005
  • 본 논문에서는 단일염기변이(SNP: Single Nucleotide Polymorphism)와 같은 유전형(Rcnotype)자료에서 결측치가 발생하였을 경우 유전형 자료의 특이성을 고려해 자료 원래의 정보손실을 최소화하는 대치법인 연관불균형 기반의 대치법(linkage disequilibrium- based imputation)과 일배체형 기반의 대치법(haplotype-based imputation)을 제시한다. 이러한 결측치 대치는 실험상에서 발생하는 결측치에 의한 중요한 정보의 손실을 최소화 한다는 점에서 필요한 방법이다. 일반적으로 그동안 생물학 자료의 결측치 대치는 대부분 주형질 대치법(major allele imputation)이 활용되어왔는데 유전형 자료에서의 이 방법의 사용은 사료의 특이성으로 인하여 결측치에 대한 높은 오차율(error rate)을 보임으로서 자료의 신뢰성을 떨어뜨릴 수 있다. 본 논문에서는 유전형 자료인 단일염기변이 자료의 시뮬레이션을 통하여 기존의 주형질 대치법과 논문에서 제안된 연관불균형 기반의 대치법과 일배체형 기반의 대치법을 비교하고 그 결과를 보여 준다.

Imputation Procedures in Weibull Regression Analysis in the presence of missing values

  • 김순귀;정동빈
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2001년도 추계학술발표회 논문집
    • /
    • pp.143-148
    • /
    • 2001
  • A dataset having missing observations is often completed by using imputed values. In this paper the performances and accuracy of complete case methods and four imputation procedures are evaluated when missing values exist only on the response variables in the Weibull regression model. Our simulation results show that compared to other imputation procedures, in particular, hotdeck and Weibull regression imputation procedure can be well used to compensate for missing data. In addition an illustrative real data is given.

  • PDF

A Comparative Study of Assessing Average Bioequivalence in $2{\times}2$ Crossover Design with Missing Observations

  • Park, Sang-Gue;Choi, Ji-Yun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권1호
    • /
    • pp.245-257
    • /
    • 2006
  • A modified Anderson and Hauck(1983) test for analyzing a two-sequence two-period crossover design in bioequivalence trials is proposed when some observations at the second period are missing. It is based on the maximum likelihood estimators of average bioequivalence model and designed for handling missing at random(MAR) situation. The performance of the proposed test is compared to other tests using Monte Carlo simulations.

  • PDF

연속적 결측이 존재하는 기온 자료에 대한 결측복원 기법의 비교 (A comparison of imputation methods for the consecutive missing temperature data)

  • 김희경;강인경;이재원;이영섭
    • 응용통계연구
    • /
    • 제29권3호
    • /
    • pp.549-557
    • /
    • 2016
  • 장기간의 기후 자료가 누적되다 보면 자료의 수집과정에서 시스템적 오류나 측정 장비의 고장 등으로 인하여 연속적 결측이 종종 발생하게 된다. 연속적인 결측 형태를 갖는 경우 시계열 결측 자료를 대체하는 것에 어려움이 따른다. 이러한 경우 참조시계열을 이용하여 결측값을 대체할 수 있다. 참조시계열은 결측이 발생한 시계열과 관련성이 높은 주변지점의 시계열로 구성할 수 있다. 본 연구에서는 결측값을 대체시킬 수 있는 3가지 결측복원 기법-수정된 정규화비율 방법, 회귀 방법, IDW 방법-을 비교하는 시뮬레이션을 수행하였다. 우리나라 14개 지점의 기후관측소의 일평균기온값을 대상으로 비교한 결과 남쪽 해안가에 위치한 기후관측소의 자료에 대해서는 IDW 방법이 가장 정확한 것으로 나타났으며, 그 외 지역의 기후관측소 자료에 대해서는 회귀 방법이 가장 정확한 것으로 나타났다.

Association Rule Mining Algorithm and Analysis of Missing Values

  • Lee, Jae-Wan;Bobby D. Gerardo;Kim, Gui-Tae;Jeong, Jin-Seob
    • Journal of information and communication convergence engineering
    • /
    • 제1권3호
    • /
    • pp.150-156
    • /
    • 2003
  • This paper explored the use of an algorithm for the data mining and method in handling missing data which had generated enhanced association patterns observed using the data illustrated here. The evaluations showed that more association patterns are generated in the second analysis which suggests more meaningful rules than in the first situation. It showed that the model offer more precise and important association rules that is more valuable when applied for business decision making. With the discovery of accurate association rules or business patterns, strategies could be efficiently planned out and implemented to improve marketing schemes. This investigation gives rise to a number of interesting issues that could be explored further like the effect of outliers and missing data for detecting fraud and devious database entries.

공간 데이터와 시계열 데이터로부터 유도된 공분산행렬을 결합한 강수량 결측값 추정 모형 (Development of a Model Combining Covariance Matrices Derived from Spatial and Temporal Data to Estimate Missing Rainfall Data)

  • 성찬용
    • 한국환경과학회지
    • /
    • 제22권3호
    • /
    • pp.303-308
    • /
    • 2013
  • This paper proposed a new method for estimating missing values in time series rainfall data. The proposed method integrated the two most widely used estimation methods, general linear model(GLM) and ordinary kriging(OK), by taking a weighted average of covariance matrices derived from each of the two methods. The proposed method was cross-validated using daily rainfall data at thirteen rain gauges in the Hyeong-san River basin. The goodness-of-fit of the proposed method was higher than those of GLM and OK, which can be attributed to the weighting algorithm that was designed to minimize errors caused by violations of assumptions of the two existing methods. This result suggests that the proposed method is more accurate in missing values in time series rainfall data, especially in a region where the assumptions of existing methods are not met, i.e., rainfall varies by season and topography is heterogeneous.

HANDLING MISSING VALUES IN FUZZY c-MEANS

  • Miyamoto, Sadaaki;Takata, Osamu;Unayahara, Kazutaka
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.139-142
    • /
    • 1998
  • Missing values in data for fuzzy c-menas clustering is discussed. Two basic methods of fuzzy c-means, i.e., the standard fuzzy c-means and the entropy method are considered and three options of handling missing values are proposed, among which one is to define a new distance between data with missing values, second is to alter a weight in the new distance, and the third is to fill the missing values by an appropriate numbers. Experimental Results are shown.

  • PDF