• Title/Summary/Keyword: Missile Model

Search Result 274, Processing Time 0.023 seconds

A Study on Optimal Allocation of Short Surface-to-Air Missile (단거리 지대공 미사일의 최적배치에 관한 연구)

  • 이영해;남상억
    • Journal of the military operations research society of Korea
    • /
    • v.26 no.1
    • /
    • pp.34-46
    • /
    • 2000
  • The object of this study is to construct a model for an optimal allocation of short surface to air missile defending our targets most efficiently from hostile aircraft´s attack. For the purpose of this, we analyze and establish facility allocation concept of existing models, apply set covering theory appropriate to problem´s properties, present the process of calculating the probability of target being protected, apply Sherali-Kim´s branching variable selection strategy, and then construct the model. As constructed model apply the reducing problem with application, we confirm that we can apply the large scale, real problem.

  • PDF

A Study on the Operation Plan of Multi-layered Defense Interceptor Missiles considering the Korean Missile Defense System and the Strategic Strike System (한국형 미사일 방어체계 특성과 전략적 타격체계 효과를 고려한 다층방어 요격미사일 운용방안 연구)

  • Seo, Minsu;Ma, Jungmok
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.31-42
    • /
    • 2021
  • In order to respond to the ballistic missile threat of North Korea, the ROK military is constructing a multi-layered defense that can minimize the vulnerability of single-layered defense. Accordingly, it is necessary to study an operation plan which can maximize the intercept rate of a multi-layered defense system. And to study the operation plan of the Korean missile defense system, it must be considered that the operational environment of the Korean military and the effects of the strategic strike system. Therefore, this study proposes a simulation model that reflects the characteristics of the Korean missile defense system and analyzes four interceptor missile operation plans. The simulation result indicates that a high intercept rate can be achieved in various situations by comprehensively considering the ballistic missile threat estimate, interceptor missile reserve, and the strategic strike system effect.

Maximum Launch Range and F-pole Evaluation For Semi-Active Radar Missile (반능동 레이더 미사일에 대한 최대 사거리 및 F-pole 평가)

  • Kwon, Ky-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.92-98
    • /
    • 2002
  • In this study, maximum launch range and F-pole are evaluated and analyzed for the semi-active radar missile concerning various launch condition, performance limitation and target maneuvers. Furthermore, general evasion maneuvers are considered when shooter approaches to target with head-on conditions. A point-mass target, shooter and missile model is used including aircraft and missile dynamics. More realistic missile motion simulation is conducted using aerodynamic performance data, geometry, performance limitation, radar seeker performance and so on. Maximum launch range, which is the distance for intercept satisfying target and missile motion and performance, is evaluated using root finding method. F-pole, which is the distance between target and shooter when intercept is completed, is evaluated assuming that shooter maneuvers through pursuit guidance to target.

Application and Determination of Defended Footprint Using a Simulation Model for Ballastic Missile Trajectory (탄도미사일 궤적 시뮬레이션 모델을 이용한 방어영역 산출 및 응용)

  • Hong, Dongwg;Yim, Dongsoon;Choi, Bongwhan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.551-561
    • /
    • 2018
  • Footprint is defined as ground area that is projected from the outer edges of the battle space protected by a defence system. This concept can be effectively used for making decisions on site selection of anti missile systems to defend against enemy's ballistic missiles. In this paper, simulations of ballistic missile trajectories based on various launch conditions are performed first and then the footprint is derived with engagement zone set as a boundary condition. Results of the simulation with various relative positions between the defense system and defended asset are also presented. The proposed method, in which the trajectories are generated based on launch point of the ballistic missile, has an advantage of approximating the defended area close to reality. Two applications are introduced in the present paper to describe how the derivation of defended area could be utilized in deployment decision of defense systems.

The Effect Analysis of Missile Warning Radar Using Probability Model (확률 모델을 이용한 미사일 경고 레이다의 효과도 분석)

  • Park, Gyu-Churl;Hong, Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.6
    • /
    • pp.544-550
    • /
    • 2009
  • To analyze the threat decision performance of MWR(Missile Warning Radar) give analysis on condition that we decide the effective threat using the POC(Probability of Over Countermeasure)/PUC(Probability of Under Countermeasure). Thus, we execute the simulation using the Monte-Carlo method to analyze effect, but the execution time of simulation took longer than we expected. In this paper, the effect analysis is proposed using the probability model to reduce the execution time of simulation. We present the setting method of parameter for probability model and the effect analysis result of MWR using the simulation. Also, we present the comparison result of simulation execution time for Monte-Carlo and probability model.

Efficient Translational Motion Compensation for Micro-Doppler Extraction of Ballistic Missiles

  • Jung, Joo-Ho;Kim, Si-Ho;Choi, In-O;Kim, Kyung-Tae;Park, Sang-Hong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.129-137
    • /
    • 2017
  • When the micro-Doppler (MD) image of a ballistic missile is derived, the translational motion compensation (TMC) method is usually applied to the inverse synthetic aperture radar (ISAR) image, but yields poor results because of the micro-motion of the ballistic missile. This paper proposes an efficient TMC method to obtain a focused MD image of a ballistic missile engaged in complicated micro-motion. During range alignment, range profiles (RPs) are coarsely aligned by using the 1D entropy cost function of RPs as a mark, then the coarsely-aligned RPs are fine-aligned by using the minimum 2D entropy of the MD image. During phase adjustment, the gradient of the phase error is appropriately weighted and added to the previous phase error to further fine-tune the aligned RPs. In simulations using the point scatterer model and the measured data from the real missile model, the proposed method provided better image focus than the existing method.

Study on Methods in Test & Evaluation of the Guided Rocket Munition (유도형 로켓탄의 시험평가 방법에 관한 연구)

  • Ahn, Mahn-Ki;Kwon, Tag-Mahn;Hwang, Un-Hee;Hwang, Woo-Yull
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1019-1025
    • /
    • 2010
  • This paper describes on methods in test and evaluation of the guided rocket munitions of the domestic new generation multiple launcher rocket system. We modified and refer to the present model of air-to-air missile(AAM) and surface-to-air missile(SAM). Also we suggested a method of surface-to-surface missile(SSM) based on the characteristics of the guided rocket in test and evaluation(T&E). According to this study, the suggested activity of T&E should be observed methods compatible with each item on the established model. Therefore, we expect that the proposed research material will be a good guide to the study of a surface-to-surface missile(SSM) installed GPS/INS integration navigation guidance & control systems in the future.

Disturbance Torque Suppression Control of Servo Motors for Missile Fin Actuators (미사일 Fin 액츄에이터용 서보모터의 외란 토크 억제 제어)

  • Kim, Chang-Hwan
    • Journal of National Security and Military Science
    • /
    • s.1
    • /
    • pp.311-343
    • /
    • 2003
  • In this paper, we propose a generalized disturbance torque suppression control scheme of servo motors for missile fin actuators. Our controller consists of both a model based feed-forward controller and a stabilizing feedback controller. The feed-forward controller is designed such that the output of nominal plant tracks perfectly the reference position command with a desired dynamic characteristics. The feedback controller stabilizes the overall closed loop system. Furthermore, the feedback controller contains a free function that can be chosen arbitrary. The free function can be designed so as to achieve both the suppression of disturbances and the robustness to model uncertainties. In order to illuminate the superior performance of our control scheme to the conventional ones, we present some simulation results.

  • PDF

A New Approach to Motion Modeling and Autopilot Design of Skid-To-Turn Missiles

  • Chanho Song;Kim, Yoon-Sik
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.231-238
    • /
    • 2002
  • In this paper, we present a new approach to autopilot design for skid-to-turn missiles which may have severe aerodynamic cross-couplings and nonlinearities with angle of attack. The model of missile motion is derived in the maneuver plane and, based on that model, pitch, yaw, and roll autopilot are designed. They are composed of a nonlinear term which compensates for the aerodynamic couplings and nonlinearities and a linear controller driven by the measured outputs of missile accelerations and angular rates. Besides the outputs, further information such as Mach number, dynamic pressure, total angle of attack, and bank angle is required. With the proposed autopilot and simple estimators of bank angle and total angle of attack, it is shown by computer simulations that the induced moments and some aerodynamic nonlinearities are properly compensated and that the performance is superior to that of the conventional ones.

Optimal Allocation Model for Ballistic Missile Defense System by Simulated Annealing Algorithm (탄도미사일 방어무기체계 배치모형 연구)

  • Lee, Sang-Heon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.1020-1025
    • /
    • 2005
  • The set covering(SC) problem has many practical application of modeling not only real world problems in civilian but also in military. In this paper we study optimal allocation model for maximizing utility of consolidating old fashioned and new air defense weapon system like Patriot missile and develop the new computational algorithm for the SC problem by using simulated annealing(SA) algorithm. This study examines three different methods: 1) simulated annealing(SA); 2) accelerated simulated annealing(ASA); and 3) selection by effectiveness degree(SED) with SA. The SED is adopted as an enhanced SA algorithm that the neighboring solutions could be generated only in possible optimal feasible region at the PERTURB function. Furthermore, we perform various experiments for both a reduced and an extended scale sized situations depending on the number of customers(protective objective), service(air defense), facilities(air defense artillery), threat, candidate locations, and azimuth angles of Patriot missile. Our experiment shows that the SED obtains the best results than others.

  • PDF