• 제목/요약/키워드: Mirror grinding

검색결과 88건 처리시간 0.023초

스윙암 방식의 형상 측정기를 이용한 대형 반사경의 정밀가공에 관한 연구 (Study on Fabrication of a Large Concave Mirror Surface Using a Swing-Arm Type Profilometer)

  • 이기암;김옥현;이응석
    • 한국기계가공학회지
    • /
    • 제7권3호
    • /
    • pp.41-46
    • /
    • 2008
  • Generally optical components are fabricated by grinding, lapping and polishing processes. Those processes take long time to obtain optical high surface quality. In the case of large optical components, the on-machine measurement is strongly recommended because the workpiece is fragile and difficult to set up for fabricating and measuring. This paper is concerned about a swing-arm mechanism which can be used for on-machine measurement of a surface profile with a sensing probe end-effect, and also for grinding or lapping the surface with a corresponding tool. The measuring accuracy and uncertainty using a swing arm type profilometer have been studied. The experimental results show that this method is useful specially in lapping process with the accuracy of $5{\mu}m$. Those inspection data are provided for correcting the residual figuring error in next processes.

  • PDF

음향방출과 동력 신호에 의한 인공지능형 연삭상태 진단 (Intelligent Diagnosis of Grinding State Using AE and Power Signals)

  • 곽재섭;하만경
    • 동력기계공학회지
    • /
    • 제6권2호
    • /
    • pp.60-67
    • /
    • 2002
  • 연삭가공은 나노스케일(Nano-scale)의 미소한 입자 절삭날을 이용한 가공으로, 공작물의 표면을 경면(Mirror surface)으로 가공할 수 있어 제품의 최종 마무리공정으로 사용되어 왔다. 그러나 연삭공정에 있어서는 공구(연삭숫돌)의 수명이 다하거나 가공계(Machining system)가 불안정해지면 채터진동과 연삭버닝 등의 현상이 발생하여 가공물의 표면품위를 저하시키는 요인으로 작용하고 있다. 따라서 본 연구는 원통플른지 연삭공정을 대상으로 공작물에서 발생하는 음향방출 신호와 연삭기 주축 모터의 동력 신호를 연삭가공 중에 검출하고, 이를 신경회로망에 적용하여 연삭가공 상태를 진단하는 시스템을 구축하고, 그 성능을 평가하였다.

  • PDF

원통연삭가공시 반도체 레이저 빔을 이용한 금속표면거칠기의 인프로세스 측정 (A Study on the In-process Measurement of Metallic Surface roughness in Cylindrical Grinding by Diode Laser)

  • 김희남
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1995년도 춘계학술대회 논문집
    • /
    • pp.1-8
    • /
    • 1995
  • This paper proposed a simple method for measuring surface roughness of ground surface. utilizing non-contact in-process measuring system using the diode laser. The measurement system is consisted of a laser unit with a diode laser and a cylindrical lens a detecting unit with polygon mirror and CCD array sensor. and a signal processing unit with a computer and device. During operation, this measuring system can provide information on surface roughness in the measuring distance with a single sampling and simultanilusly monitor the state of the grind wheel. The experimental results, showed that the increase of the feed rate and the dressing speed an caused increase in the surface roughness and when the surface roughness is 4Rmax-10Rmax, the cutting speed is 1653m/min-1665m/min. the feed rate is 0.2m/min-0.9m/min, the dressing speed is 0.2mm/rev-0.4mm/rev, the stylus method and the in-process method can be obtained the same results. thus under limited working conditions. using the proposed system. the surface roughness of the ground surface during cylindrical grinding can be obtained through the in-process measurement method using the diode laser.

  • PDF

디지탈 VTR 드럼용 반구 고속 정밀베어링의 경면연마 시스템 (Development of Mirror~like Polishing System for Hemispherical High-¬speed Precision Bearing for Digital VTR Drum)

  • 김정두;최민석;우기명;김영일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.24-28
    • /
    • 1996
  • Mirror-like polishing system of hemisphericall high-speed precision bearing for digital VTR drum was developed. Mechamism of the polishing process was analyzed in the view point of polishing contact range and contact length between the tool and the workpiece surface. It was suggested that the two stage polishing process adoptiong the diamond grinding wheel and polishing tool instead of multistage lapping processes, which enables the mass production of the bearing by reduction of polishing time.

  • PDF

사파이어 웨이퍼의 ELID 랩핑 가공 특성에 관한 연구 (A Study on Characteristics of ELID Lapping for Sapphire Wafer Material)

  • 곽태수;한태성;정명원;김윤지;우에하라 요시히로;오오모리 히토시
    • 한국정밀공학회지
    • /
    • 제29권12호
    • /
    • pp.1285-1289
    • /
    • 2012
  • This study has been focused on application of ELID lapping process for mirror-surface machining of sapphire wafer. Sapphire wafer is a superior material with optic properties of high performance as light transmission, thermal conductivity, hardness and so on. High effective surface machining technology is necessary to use sapphire as various usages. The interval ELID lapping process has been set up for lapping of the sapphire material. According to the ELID lapping experimental results, it shows that 12.5 kg of load for lapping is most pertinent to ELID lapping. the surface of sapphire can be eliminated by metal bonded wheel with micron abrasives and the surface roughness of 60 nmRa can be gotten using grinding wheel of 2,000 mesh in 4.5 um, depth of cut. In this study, the chemical experiments after ELID grinding also has been conducted to check chemical reaction between workpiece and grinding wheel on ELID grinding process. It shows that the chemical reaction has not happened as the results of the chemical experiments.

초정밀 비구면 렌즈 금형가공시스템 개발 (Development of machining system for ultra-precision aspheric lens mold)

  • 백승엽;이하성;강동명
    • Design & Manufacturing
    • /
    • 제2권1호
    • /
    • pp.33-38
    • /
    • 2008
  • As consumer in optics, electronics, aerospace and electronics industry grow, the demand for ultra precision aspherical surface lens increases higher. Precision turning with single-diamond tools has a long history of development for fabrication of optical quality surfaces since the advent of aerostatic rotary spindles and precise linear motion guide ways. To enhance the precision and productivity of ultra precision aspherical surface micro lens, the following specification of ultra precision grinding system is required: the highest rotational speed of the grinder is 100,000rpm and its turning accuracy is $0.1{\mu}m$, positioning accuracy is $0.1{\mu}m$. The development process of the grinding system for the ultra precision aspherical surface micro lens for optoelectronics industry is introduced. In the work reported in this paper, an intelligent grinding system for ultra precision aspherical surface machining was designed by considering the factors affecting the surface roughness and profiles accuracy. An aerostatic form was adopted to build the spindle of the workpiece and the spindle of grinder and ultra precision LM guide way was adopted in this system. And this paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. It results was that a form accuracy of $0.6{\mu}m$ P-V and a surface roughness of $0.006{\mu}m$ Rmax.

  • PDF

원통연삭가공시 반도체 레이저 빔을 이용한 금속표면거칠기의 인프로세스 측정 (A Study on the In-Process Measurement of Metallic Surface Roughness in Cylindrical Grinding by Diode Laser)

  • 김희남;이주상
    • 한국안전학회지
    • /
    • 제10권3호
    • /
    • pp.30-41
    • /
    • 1995
  • This paper proposed a simple method for measuring surface roughness of ground surface. Utilizing non-contact in-process measuring system using the diode laser. The measurement system is consisted of a laser unit with a diode laser and a cylindrical lens, a detecting unit with polygon mirror and CCD array sensor, and a signal processing unit with a computer and device. During operation, this measuring system can provide information on surface roughness in the measuring distance with a single sampling and simultaniously monitor the state of the grind wheel. The experimental results, showed that the Increase of the feed rate and the dressing speed an caused increase in the surface roughness and when the surface roughness is 4Rmax-10Rmax, the cutting speed is 1653m/min-1665m/min, the table speed is 0.2n1/min -0.9m/min, the dressing speed is 0.2mm/rev~0.4mm/rev, the stylus method and the in-process method can be obtained the same results. Thus, under limited working conditions, using the proposed system, the surface roughness of the ground surface during cylindrical grinding can be obtained through the in-process measurement method using the diode laser.

  • PDF

자기연마기술을 이용한 고속절삭공구의 성능향상에 관한 연구 (고속절삭공구의 성능평가를 중심으로) (A Study on the Improvement of Performance of High Speed Cutting Tool using Magnetic Fluid Grinding Technique(A Performance Estimation of High Speed Cutting Tool))

  • 조종래;양순철;정윤교
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.354-361
    • /
    • 2005
  • In high speed cutting process, due to the friction between the tool and workpiece, a temperature rise of contacting part is serious. It need to develop cutting tool for overcoming such a poor condition. So now, some studies, the optimization of tool shapes, the fine grains of tool material, multi-layer coating of tools are processing. If mirror finishing on the tool is processed, there is advantage of relation between chip and tool, because of less friction, and also tool's lift would be increased. As a result mirror like finishing is expected efficient enhancement of tool. Generally, it is too difficult to process by a general way for tools of complex shapes, it is required a new method to process such complex shape tools. The magnetic fluid polishing technique can polish the workpiece of complex shape, because the polishing method which polishes as compress the workpiece by the magnetism abrasives to arrange to the linear according to the line of magnetic force. In this paper, We polished the surface of the high speed cutting tool using the magnetic fluid polishing technique, to enhance the performance of the high speed cutting tool.

  • PDF

초음파 진동절삭에 의한 광학 플라스틱의 미소표면성상 분석

  • 최인휴;김정두
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.115-120
    • /
    • 1992
  • Mirror-surface machining is very important machining technology to manufacture optical parts. especially brittle materials. In case of optical plastics, it is produced through both grinding and polishing till now. New machining method which is more efficient and contributed to the protection of the environmental pollution is, therefore, studied. In this , experimental results and an analysis of surface roughness in ultrasonic vibration cutting of optical plastic (CR-39) which is used for optical lens is presented. In results, a comparison of the micro-structure of machined surfaces produced by cutting with ultrasonic vibration and conventional turning is presented by analyzing S.E.M. photograph. Also, wavelength spectrum analysis is performed to investigate the surface-characteristics machined by ultrasonic vibration cutting.