• Title/Summary/Keyword: Mirror array

Search Result 87, Processing Time 0.026 seconds

Fabrication of Micro Mirror Array for Small Form Factor Optical Pick-up by Micro UV-Molding (마이크로 UV성형을 통한 초소형 광픽업용 마이크로 미러 어레이 제작)

  • Choi Yong;Lim Jiseok;Kim Seokmin;Sohn Jin-Seung;Kim Hae-Sung;Kang Shinill
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.477-481
    • /
    • 2005
  • Wafer scale micro mirror array with high surface quality for small form factor (SFF) optical pick-up was fabricated by micro UV-molding. To replicate micro mirror array for SFF optical pick-up, a high- precision mold was fabricated using micro-machining technology. Wafer scale micro mirror array was UV-molded using the mold and then the process was optimized experimentally. The surface flatness and roughness of UV-molded micro mirror array were measured by white light scanning interferomety system and analyzed the transcribing characteristics. Finally, the measured flatness of UV-molded micro mirror away for SFF optical pick-up, which was fabricated in the optimum processing condition, was less than 70nm.

Fabrication of micro mirror array for small form factor optical pick-up by micro UV-molding (마이크로 UV 성형을 통한 초소형 광픽업용 마이크로 미러 어레이 제작)

  • Choi Yong;Lim Jiseok;Kim Seokmin;Sohn Jin-Seung;Kim Hae-Sung;Kang Shinill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.47-50
    • /
    • 2005
  • In this study, micro mirror array for small form factor optical pick-up was replicated by micro UV-molding. First, mold for micro mirror array was fabricated using micromachining. Also, to analyze the characteristics of the surface quality, flatness of replicated mirror surface were measured by white light scanning inteferometry system. The results show that the micro mirror array with a sufficient surface quality can be obtained by polymer replication process.

  • PDF

Uniformity Improvement of Micromirror Array for Reliable Working Performance as an Optical Modulator in the Maskless Photolithography System

  • Lee, Kook-Nyung;Kim, Yong-Kweon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.2
    • /
    • pp.132-139
    • /
    • 2001
  • We considered the uniformity of fabricated micromirror arrays by characterizing the fabrication process and calculating the appropriate driving voltages of micromirrors used as virtual photomask in maskless photolithography. The uniformity of the micromirror array in terms of driving voltage and optical characteristics is adversely affected by factors, such as the air gap between the bottom electrode and the mirror plate, the spring shape and the deformation of the mirror plate or torsion spring. The thickness deviation of the photoresist sacrificial layer, the misalignment between mirror plate and bottom electrode, the aluminum deposition condition used to produce the spring and the mirror plate, and initial mirror deflection were identified as key factors. Their importance lies in the fact that they are related to air gap deviations under the mirror plate, asymmetric driving voltages in left and right mirror directions, and the deformation of the Al sring or mirror plate after removal of the sacrificial layer. The plasma ashing conditions used for removing the sacrificial layer also contributed to the deformation of the mirror plate and spring. Driving voltages were calculated for the pixel operation of the micromirror array, and the non-uniform characteristics of fabricated micromirrors were taken into consideration to improve driving performance reliability.

  • PDF

The Mirror Active Element Pattern Method for The Radiation Pattern Computation of Linear Array Antennas (선형 배열 안테나의 방사패턴 계산을 위한 Mirror Active Element Pattern 방법)

  • Kim, Jae-Hyun;Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.94-102
    • /
    • 2013
  • We propose the mirror active element pattern (AEP) method for the radiation pattern computation of linear array antennas versus scan angles. The computation time for the radiation pattern of linear array antennas using the mirror AEP method is reduced by almost half compared to that using the AEP method because the number of AEPs of elements obtained by the full-wave simulation necessary for the radiation pattern computation of linear array antennas is reduced by almost half. The difference between the radiation patterns of linear array antennas obtained by the full-wave simulation and mirror AEP method is very small for wide scan angle range when the radiation pattern of an antenna element is symmetric.

Super multi-view 3-D display system based on focused light Array using reflective vibrating scanner array (ViSA)

  • Ho-In Jeon;Nak-Hee Jung;Jin-San Choi;Young Jung;Young Huh
    • Broadcasting and Media Magazine
    • /
    • v.6 no.2
    • /
    • pp.84-101
    • /
    • 2001
  • In this paper, we present a primitive system design of a super multi-view(SMV) 3-D display system based on a focused light array(FLA) concept using reflective vibrating scanner array(ViSA). The parallel beam scanning using a vibrating scanner array is performed by moving left and right an array of curvature-compensated mirrors or diamond-ruled reflective grating attached to a vibrating membrane. The parallel laser beam scanner array can replace the polygon mirror scanner which has been used in the SMV 3-D display system based on the focused light array(FLA) concept proposed by Kajiki at TAO(Telecommunications) Advancement Organization). The proposed system has great advantages in the sense that it requires neither huge imaging optics nor mechanical scanning pals. Some mathematical analyses and fundamental limitations of the proposed system are presented. The proposed vibrating scanner array, after some modifications and refinements, may replace polygon mirror-based scanners in the near future.

  • PDF

Selective surface modification for biochip with micromirror array (마이크로미러를 사용한 바이오칩의 선택적 표면 개질을 위한 광변조 실험)

  • Lee, Kook-Nyung;Sin, Dong-Sik;Lee, Yoon-Sik;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2257-2259
    • /
    • 2000
  • This paper reports on the design, fabrication and driving experiment of micro mirror array(MMA) for lithography process to apply to biochip fabrication Photolithography technology is applied to activate specific area on the surface of modified glass surface, DNA monomers are bound on the activated area of the glass surface. After repeat of DNA monomer synthesizing process, DNA single strand probes could be solid-synthesized on the glass substrate. Without using photomask, photolithography process is tried using micro mirror array(MMA). Photomask or mask alignment is not required in maskless photolithography process using micro mirror array.

  • PDF

Development of Retina Photographing and Multi Channel Image Acquisition System for Thickness Measurement of Retina (망막 두께 측정을 위한 망막 촬영 및 다채널 영상획득장치 개발)

  • 양근호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.13-17
    • /
    • 2004
  • In order to measure the retina thickness, the retina photographing system and the multi-channel high speed image data acquisition system is developed. This system requires the optical processing techniques and the high speed image processing techniques. The HeNe laser beam is projected the retina in artificial eye and then we sensed the reflected laser signal using APD array. The laser projection system on retina using optical instruments is implemented. In order to project the plane laser beam on retina, laser photographing system used the polygon mirror for horizontal scanning and the galvano mirror for vertical scanning. We acquired retina images in each channel of APD array, transferred computer using PCI interface the image data after real-time A/D converting.

  • PDF

Simulation of Lens Aberration Correction for Polygon Mirror Scanning (PMS) (Polygon Mirror Scanning (OMS)을 위한 렌즈의 구면 수차 보정 시뮬레이션)

  • 신승연
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1999.08a
    • /
    • pp.128-129
    • /
    • 1999
  • Polygon Mirror Scanning(PMS) is composed of LED array, magnifying lens, polygon mirror and motor. It is important to correct the lens aberrations to gain the image we want to show. In this paper, we have simulated the lens aberration correction to reduce the spherical aberration . We have obtained a aspherical lens which is corrected the spherical aberration.

  • PDF

Modeling and Measurement of Electrostatic Micro Mirror Array Fabricated with Single Layer Polysilicon Micromachining Technology (단층 다결정 실리콘 마이크로머시닝 기술로 제작된 정전형 마이크로 미러 어레이의 모델링 및 측정)

  • Min, Young-Hoon;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.612-614
    • /
    • 1997
  • Silicon based micro mirror array is a highly efficient component for use in optical applications such as adaptive optical systems and optical correlators. A micro mirror array designed, fabricated and tested here is consisted of $5{\times}5$ single layer polysilicon, electrostatically driven actuators. In this paper, deflection characteristics and pull-in behavior of the actuators for analog control was studied and particularly, the influence of the residual stress in flexure beams for the restorative force of actuators was considered. The springs are modeled as a residual stress-free spring and a spring with residual stress. In calculation, a mirror with the residual stress-free springs has 30.3N/m spring constant and 31.1V pull-in voltage. On the other hand, a mirror with the stressed springs has 23.6N/m and 27.4V respectively. The experimental result, which is 20.5N/m and 25.5V, shows that the stressed springs ore well modeled.

  • PDF

Fabrication of Micromirror Array with Vertical Spring Structure

  • Shin, Jong-Woo;Kim, Yong-Kweon;Choi, Bum-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.416-418
    • /
    • 1996
  • A $50{\times}50{\mu}m^2$ aluminum micromirror array is fabricated using surface micromachining technology. $50{\times}50$ micromirrors are arrayed two dimensionally. The micromirror plate is supported by a vertical spring structure that is placed underneath the mirror plate. When the mirror plates reflect a light, the micromirror array un have large effective reflecting area. Fabrication of vertical spring uses only one mask and shadow evaporation process.

  • PDF