• 제목/요약/키워드: Mirror Fabrication

검색결과 136건 처리시간 0.021초

광기록장치의 pick-up 헤드용 미러의 설계 및 제작 (Design and fabrication of mirror for optical pick-up head)

  • 천중현;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.3292-3294
    • /
    • 1999
  • In this paper, electrostatic scanner mirror for optical pick-up head is designed and fabricated. The mirror size is $20{\mu}m{\times}2400{\mu}m{\times}2400{\mu}m$ and torsional beam size is $10{\mu}m{\times}20{\mu}m{\times}500{\mu}m$. Static deflection angle is calculated ${\pm}0.4$ degrees when the maximum driving voltage is 20 V. Silicon mirror was fabricated using KOH etching and deep RIE. For passivation of the patterned mirror from KOH solution, parylene thin film was used and its usefulness has been verified. Driving electrode was fabricated using UV LIGA process. Mirror and electrode were bonded.

  • PDF

마이크로 UV 성형을 통한 초소형 광픽업용 마이크로 미러 어레이 제작 (Fabrication of micro mirror array for small form factor optical pick-up by micro UV-molding)

  • 최용;임지석;김석민;손진승;김해성;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.47-50
    • /
    • 2005
  • In this study, micro mirror array for small form factor optical pick-up was replicated by micro UV-molding. First, mold for micro mirror array was fabricated using micromachining. Also, to analyze the characteristics of the surface quality, flatness of replicated mirror surface were measured by white light scanning inteferometry system. The results show that the micro mirror array with a sufficient surface quality can be obtained by polymer replication process.

  • PDF

Uniformity Improvement of Micromirror Array for Reliable Working Performance as an Optical Modulator in the Maskless Photolithography System

  • Lee, Kook-Nyung;Kim, Yong-Kweon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제1권2호
    • /
    • pp.132-139
    • /
    • 2001
  • We considered the uniformity of fabricated micromirror arrays by characterizing the fabrication process and calculating the appropriate driving voltages of micromirrors used as virtual photomask in maskless photolithography. The uniformity of the micromirror array in terms of driving voltage and optical characteristics is adversely affected by factors, such as the air gap between the bottom electrode and the mirror plate, the spring shape and the deformation of the mirror plate or torsion spring. The thickness deviation of the photoresist sacrificial layer, the misalignment between mirror plate and bottom electrode, the aluminum deposition condition used to produce the spring and the mirror plate, and initial mirror deflection were identified as key factors. Their importance lies in the fact that they are related to air gap deviations under the mirror plate, asymmetric driving voltages in left and right mirror directions, and the deformation of the Al sring or mirror plate after removal of the sacrificial layer. The plasma ashing conditions used for removing the sacrificial layer also contributed to the deformation of the mirror plate and spring. Driving voltages were calculated for the pixel operation of the micromirror array, and the non-uniform characteristics of fabricated micromirrors were taken into consideration to improve driving performance reliability.

  • PDF

광 저장장치용 마이크로 미러 엑츄에이터 (Micro-Mirror Actuator for Optical Disk Drives)

  • 김종완;서화일;이우영;임경화;김영철
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2001년도 추계 기술심포지움
    • /
    • pp.222-225
    • /
    • 2001
  • Optical disk drives read information by replacing a laser beam on the disk track. As information has become larger, the more accurate position control of a laser beam is necessary. In this paper, we report the analysis and fabrication of the micro mirror for optical disk drivers. The mirror was fabricated by using MEMS technology and it's characteristics investigated. Also, electrode structure for reducing squeeze effect was discussed.

  • PDF

바이오칩 제작 장치용 단결정 실리콘 마이크로 미러 어레이의 설계와 제작 (Design and fabrication of a single crystalline silicon micromirror array for biochip fabrication systems)

  • 장윤호;이국녕;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.49-52
    • /
    • 2003
  • Single crystalline silicon (SCS) was adopted for a reliable micromirror array of biochip fabrication applications. SCS has excellent mechanical properties and smooth surface, which is the best material for micromirror devices. The mirror array has $16{\times}16$ micromirrors and each mirror has a $120{\mu}m{\times}100{\mu}m$ reflective surface. The micromirror has simple torsional beam springs and electrostatic force was used for driving. The designed tilting angle was $9.6^{\circ}$, and the tilting angles were measured according to applied voltages. The surface roughness was measured by a laser profiler. The response time was measured using He-Ne laser and position sensitive diode (PSD), and the lifetime was checked for reliability proof.

  • PDF

A 32 by 32 Electroplated Metallic Micromirror Array

  • Lee, Jeong-Bong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제2권4호
    • /
    • pp.288-294
    • /
    • 2002
  • This paper presents the design, fabrication and characterization of a 32 by 32 electroplated micromirror array on a glass, a low cost substrate. Approaches taken in this work for the fabrication of micromachined mirror arrays include a line addressing scheme, a seamless array design for high fill factor, planarization techniques of polymeric interlayers, a high yield methodology for the removal of sacrificial polymeric interlayers, and low temperature and chemically safe fabrication techniques. The micromirror is fabricated by aluminum and the size of a single micromirror is 200 $\mu\textrm{m}{\;}{\times}200{\;}\mu\textrm{m}$. Static deflection test of the micro-mirror has been carried out and pull-in voltage of 44V and releasing voltage of 30V was found.

집적형 광 픽업용 대면적 실리콘 미러 제작 (Fabrication of Large Area Silicon Mirror for Integrated Optical Pickup)

  • 김해성;이명복;손진승;서성동;조은형
    • 정보저장시스템학회논문집
    • /
    • 제1권2호
    • /
    • pp.182-187
    • /
    • 2005
  • A large area micro mirror is an optical element that functions as changing an optical path by reflection in integrated optical system. We fabricated the large area silicon mirror by anisotropic etching using MEMS for implementation of integrated optical pickup. In this work, we report the optimum conditions to better fabricate and design, greatly improve mirror surface quality. To obtain mirror surface of $45^{\circ},\;9.74^{\circ}$ off-axis silicon wafer from (100) plane was used in etching condition of $80^{\circ}C$ with 40wt.% KOH solution. After wet etching, polishing process by MR fluid was applied to mirror surface for reduction of roughness. In the next step, after polymer coating on the polished Si wafer, the Si mirror was fabricated by UV curing using a trapezoid bar-type way structure. Finally, we obtained peak to valley roughness about 50 nm in large area of $mm^2$ and it is applicable to optical pickup using blu-ray wavelength as well as infrared wavelength.

  • PDF

A Novel Axial Foldable Mechanism for a Segmented Primary Mirror of Space Telescope

  • Thesiya, Dignesh;Srinivas, Arra;Shukla, Piyush
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권3호
    • /
    • pp.269-279
    • /
    • 2015
  • Future space missions will have larger telescopes in order to look deeper into space while improvising on spatial resolution. The primary mirrors for these telescopes will be so large that using a monolithic mirror will be nearly impossible because of the difficulties associated with its fabrication, transportation, and installation on a launch vehicle. The feasibility of launching these huge mirrors is limited because of their small launch fairing diameter. The aerodynamic shape of the fairing requires a small diameter, but the height of the launch vehicle, which is available for designers to utilize, is larger than the fairing diameter. This paper presents the development of an axial deployment mechanism based on the screw jack principle. The mechanism was designed and developed, and a prototype was constructed in order to demonstrate a lab model.

Ni 도금 구조물을 이용한 전자력 구동 Al 미러의 제작 (Fabrication of Al mirror with Ni electroplated structure for magnetic actuation)

  • 임태선;김용권;최형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.2239-2241
    • /
    • 2000
  • In this study, we fabricated surface micromachined mirror that is actuated by magnetic force. The mirror was fabricated with Al, and Ni was electroplated on the surface of Al mirror as a magnetic material. The fabricated mirror is actuated by magnetic force of simple solenoid. The maximum deflection angle is about 70$^{\circ}$ when the applied magnetic field is about $1.5{\times}10^4$A/m.

  • PDF

진공소결을 통한 자동차용 인사이드 미러 접합부의 스테인레스강 선정에 관한 연구 (A Study on the Selection of Stainless Steel for Automotive Inside Mirror Joint by Vacuum Sintering)

  • 성시명;정인룡
    • Design & Manufacturing
    • /
    • 제12권1호
    • /
    • pp.36-40
    • /
    • 2018
  • The car requires an inside mirror installed between the driver's seat and the passenger's seat to ensure the driver's rear and side view of the driver. Inside mirrors must always be attached to the vehicle to ensure the driver's visibility. Inside mirrors attached to the windshield of a vehicle are always exposed to direct sunlight and should be semi-permanently usable in hot and humid summer weather in Korea. Therefore, the mirror mount, which is the junction of the inside mirror, is particularly important in corrosion resistance and wear resistance suitable for humidity. Mirror mounts are currently difficult to manufacture due to their reliance on powder molding technology in advanced countries such as Japan and Germany. This paper focuses on the fabrication of high corrosion resistant stainless mirror mounts by vacuum sintering technique and focuses on the selection of materials suitable for the production of mirror mounts through experiments of 300 series stainless steel and 400 series stainless steel manufactured by vacuum sintering.