• Title/Summary/Keyword: Minus Voltage

Search Result 9, Processing Time 0.018 seconds

An Operation Method of Many UPFC's for Maintaining the Optimal Voltage Profile (계통 최적전압 상태 유지를 위한 다기 UPFC 운용방법)

  • Kim, Tae-Hyun;Moon, Seung-Il;Park, Jong-Keun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.11
    • /
    • pp.531-535
    • /
    • 2000
  • A method to compute the reactive powers of the added buses by the decoupled UPFC model for the optimal voltage profile is presented, by which the voltage magnitudes of PQ buses can get closer to the reference value(usually one p.u.). The performance index for assessing how much the voltage magnitude is closer to the reference value is defined as the squared sum of the present voltage minus the reference voltage multiplied by the weighting number associated with the relative importance of the buses. Numerical example in a 10-unit 39-bus power system with 2 UPFC's shows that the performance index can be very much reduced by operating many UPFC's with the reactive powers for the optimal voltage profile proposed in this paper.

  • PDF

Maintaining Optimal Voltage Profile by the Operation of UPFC (UPFC 운용에 의한 전력 시스템 최적 전압 유지)

  • Kim, Tae-Hyun;Moon, Chae-Joo;Park, Jong-Keun;Moon, Seung-Il;Seo, Jang-Cheol;Han, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.265-267
    • /
    • 2000
  • A method to compute the reactive powers of the added buses by the decoupled UPFC model for the optimal voltage profile is presented, by which the voltage magnitudes of PQ buses can get closer to the reference value(usually one p.u.). The performance index for assessing how much the voltage magnitude is closer to the reference value is defined as the squared sum of the present voltage minus the reference voltage multiplied by the weighting number associated with the relative importance of the buses. Numerical example in a 10-unit 39-bus power system with 2 UPFC's shows that the performance index can be very much reduced by operating multi UPFC's with the reactive powers for the optimal voltage profile proposed in this paper.

  • PDF

High Step-Up Converter with Hybrid Structure Based on One Switch

  • Hwu, K.I.;Peng, T.J.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1566-1577
    • /
    • 2015
  • A novel high step-up converter is presented herein, which combines the conventional buck-boost converter, the charge pump capacitor and the coupling inductor. By doing so, a quite high voltage conversion ratio due to not only the turns ratio but also the duty cycle, so as to increase design feasibility. It is noted that the denominator of the voltage conversion ratio is the square of one minus duty cycle. Above all, there is no voltage spike across the switch due to the leakage inductance and hence no passive or active snubber is needed, and furthermore, the used switch is driven without isolation and hence the gate driving circuit is relatively simple, thereby upgrading the industrial application capability of this converter. In this paper, the basic operating principles and the associated mathematical deductions are firstly described in detail, and finally some experimental results are provided to demonstrate the effectiveness of the proposed high step-up converter.

Full Wave Cockroft Walton Application for Transcranial Magnetic Stimulation

  • Choi, Sun-Seob;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.246-252
    • /
    • 2011
  • A high-voltage power supply has been built for activation of the brain via stimulation using a Full Wave Cockroft-Walton Circuit (FWCW). A resonant half-bridge inverter was applied (with half plus/half minus DC voltage) through a bidirectional power transistor to a magnetic stimulation device with the capability of producing a variety of pulse forms. The energy obtained from the previous stage runs the transformer and FW-CW, and the current pulse coming from the pulse-forming circuit is transmitted to a stimulation coil device. In addition, the residual energy in each circuit will again generate stimulation pulses through the transformer. In particular, the bidirectional device modifies the control mode of the stimulation coil to which the current that exceeds the rated current is applied, consequently controlling the output voltage as a constant current mode. Since a serial resonant half-bridge has less switching loss and is able to reduce parasitic capacitance, a device, which can simultaneously change the charging voltage of the energy-storage condenser and the pulse repetition rate, could be implemented. Image processing of the brain activity was implemented using a graphical user interface (GUI) through a data mining technique (data mining) after measuring the vital signs separated from the frequencies of EEG and ECG spectra obtained from the pulse stimulation using a 90S8535 chip (AMTEL Corporation).

A Study on the Analytical Model for Grooved Gate MOSFET (Grooved Gate MOSFET의 해석적 모델에 관한 연구)

  • 김생환;이창진;홍신남
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1991.10a
    • /
    • pp.205-209
    • /
    • 1991
  • The conventional modeling equations for planar MOSFET can not be directly used for zero or minus junction depth concave MOSFET. In this paper, we suggest a new model which can simulate the electrical characteristics of concave MOSFET. The threshold voltage modeling was achieved using the charge sharing method considering the relative difference of source and drain depletion widths. To analyze the ID-VDS characteristics, the conventional expressions for planar MOSFET were employed with the electrical channel length as an effective channel length and the channel length modulation factor as ${\alpha}$ΔL. By comparing the proposed model with experimental results, we could get reasonably similar curves and we proposed a concave MOSFET conditiion which shows no short channel effect of threshold voltage(V${\gamma}$).

A New Controller of Single Phase Active Power Filter Using Rotating Synchronous Frame d-q Transformation (회전하는 동기 좌표계 d-q 변환을 이용한 단상 능동 전력 필터의 새로운 제어기)

  • Kang, Min Gu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.271-275
    • /
    • 2014
  • A New Single Phase Active Power Filter Controller is proposed using Rotating Synchronous Frame d-q transformation. Instantaneous Active Power is calculated using d-q transformation. Average Value of Instantaneous Active Power is obtained using Low Pass Filter. Because power factor is corrected, source current is in phase with source voltage. Amplitude of source current is calculated using single phase power formula. Reference signal of compensated current of Active power filter is obtained from source current reference signal minus load current. Simulation is performed using hysteresis current controller in proposed new controller. Simulation result shows that because active power filter compensates load current, source current is in phase with source voltage and source current is sinusoidal. And Hilbert transformer is builded using all pass filter.

The Characteristics of Amorphous-Oxide-Semiconductor Thin-Film-Transistors According to the Active-Layer Structure (능동층 구조에 따른 비정질산화물반도체 박막트랜지스터의 특성)

  • Lee, Ho-Nyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1489-1496
    • /
    • 2009
  • Amorphous indium-gallium-zinc-oxide thin-film-transistors (TFTs) were modeled successfully. Dependence of TFT characteristics on structure, thickness, and equilibrium electron-density of the active layer was studied. For mono-active-layer TFTs, a thinner active layer had higher field-effect mobility. Threshold voltage showed the smallest absolute value for the 20 nm active-layer. Subthreshold swing showed almost no dependence on active-layer thickness. For the double-active-layer case, better switching performances were obtained for TFTs with bottom active layers with higher equilibrium electron density. TFTs with thinner active layers had higher mobility. Threshold voltage shifted in the minus direction as a function of the increase in the thickness of the layer with higher equilibrium electron-density. Subthreshold swing showed almost no dependence on active-layer structure. These data will be useful in optimizing the structure, the thickness, and the doping ratio of the active layers of oxide-semiconductor TFTs.

Analysis of Problems when Generating Negative Power for IT devices (IT 기기의 마이너스 전원 생성 시 문제점에 관한 분석)

  • Jun, Ho-Ik;Lee, Hyun-Chang
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.109-115
    • /
    • 2020
  • In this paper, the problem that occurs when negative voltage is generated using an inexpensive buck device in an IT device that is supplied with a single power by an adapter or battery is analyzed. For the cause analysis, the principle of operation of the buck device and the principle of the inverter circuit were examined, and the circuit characteristics of the inverter circuit were analyzed using the buck device. As a result of the analysis, it was confirmed that the inverter circuit using the buck device initially needs a large starting current, and in particular, in the case of a current capacity that is less than the starting current in the circuit that supplies power, it was confirmed that it could fall into a state similar to the latch-up phenomenon. In order to confirm the analysis result, an experimental circuit was constructed and the input current was checked. If the supply current is sufficient, it is confirmed that over-current flows and starts. If the supply current is insufficient, the circuit cannot start and a latch-up phenomenon occurs.

The Design of IQ Vector Modulator having AGC Function for IMT-2000 (AGC 기능을 갖춘 IMT-2000용 IQ 벡터 모듈레이터 설계)

  • 오인열;박종화;손광철;김태웅;전형준;나극환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.6
    • /
    • pp.575-583
    • /
    • 2003
  • In thesis we applied the short or open reflection type for IQ vector modulator The open or short type is operated even exception of other redundancy circuit. Generally IQ vector modulator uses MESFET in performing reflection open or short, then minus voltage which is having complex structure is required to operate MESFET via IQ signal. However BJT can be substituted for MESFET, BJT is improved characteristics like as cutoff frequency, electron mobility and so on. We used BJT in IQ vector modulator which is compatible with TTL level in I,Q digital signal, and attached AGC function. We got the result of operations within ${\pm}$ 1$^{\circ}$ phase and ${\pm}$ 0.6 dB amplitude Variation With full range of 20 dB and Variation of ${\pm}$ 6$^{\circ}$ Phase and ${\pm}$ 0.5 dB amplitude Versus full temperature range.