• Title/Summary/Keyword: Mining method

Search Result 2,073, Processing Time 0.025 seconds

Numerical Study on the Design of Vertical Shaft based on the Falling Mechanism of Ore Particles in Glory Hole Mining Method (글로리 홀 채광법에서 광체의 낙하메커니즘을 통한 수갱 안전설계 연구)

  • Choi, Sung-Oong;Kim, Jaedong
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.17-23
    • /
    • 2010
  • Recently, a large number of open-pit mines are planning to change their mining method to underground types because the environmental concerns and legal regulations are increased with a rise in the standard of living. The K silica mine, which is one of them and located in Kyunggi province, is planning the establishment of a vertical shaft which will be used for ore-pass channel in their new glory hole mining method. This vertical shaft will be designed to join with a horizontal gangway excavated from the ground level. In this new mining system, the excavated ore particles will be stored inside a shaft and transported out with a help of a conveyor belt. Therefore the hang-up of ore particles in a shaft, the control of gate at the bottom of a shaft, the installation of dog-leg at the gate should be investigated identically. In this study, the PFC-2D code which is one of the discrete element numerical methods has been applied to simulate the particle flow mechanism in a shaft, and the optimum mine design has been proposed to maximize the productivity and to minimize the system damage.

  • PDF

Parallel Data Mining with Distributed Frequent Pattern Trees (분산형 FP트리를 활용한 병렬 데이터 마이닝)

  • 조두산;김동승
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2561-2564
    • /
    • 2003
  • Data mining is an effective method of the discovery of useful information such as rules and previously unknown patterns existing in large databases. The discovery of association rules is an important data mining problem. We have developed a new parallel mining called Distributed Frequent Pattern Tree (abbreviated by DFPT) algorithm on a distributed shared nothing parallel system to detect association rules. DFPT algorithm is devised for parallel execution of the FP-growth algorithm. It needs only two full disk data scanning of the database by eliminating the need for generating the candidate items. We have achieved good workload balancing throughout the mining process by distributing the work equally to all processors. We implemented the algorithm on a PC cluster system, and observed that the algorithm outperformed the Improved Count Distribution scheme.

  • PDF

Implementation of Data Preparation System for Data Mining on Heterogenious Distributed Environment (이기종 분산환경에서 데이터마이닝을 위한 데이터준비 시스템 구현)

  • Lee sang hee;Lee won sup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.3
    • /
    • pp.109-113
    • /
    • 2004
  • This paper is to investigate the efficiency of the process of data preparation for existing data mining tools, and present a design principle for a new efficient data preparation system . We compare the often used data mining tools based on the access method to local and remote databases, and on the exchange of information resources between different computers. The compared data mining tools are Answer Tree, Clementine, Enterprise Miner, and Weka. We propose a design principle for an efficient system for data preparation for data mining on the distributed networks.

  • PDF

Industrial Waste Database Analysis Using Data Mining Techniques

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.455-465
    • /
    • 2006
  • Data mining is the method to find useful information for large amounts of data in database. It is used to find hidden knowledge by massive data, unexpectedly pattern, and relation to new rule. The methods of data mining are decision tree, association rules, clustering, neural network and so on. We analyze industrial waste database using data mining technique. We use k-means algorithm for clustering and C5.0 algorithm for decision tree and Apriori algorithm for association rule. We can use these outputs for environmental preservation and environmental improvement.

  • PDF

Automated Classification of PubMed Texts for Disambiguated Annotation Using Text and Data Mining

  • Choi, Yun-Jeong;Park, Seung-Soo
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.101-106
    • /
    • 2005
  • Recently, as the size of genetic knowledge grows faster, automated analysis and systemization into high-throughput database has become hot issue. One essential task is to recognize and identify genomic entities and discover their relations. However, ambiguity of name entities is a serious problem because of their multiplicity of meanings and types. So far, many effective techniques have been proposed to analyze documents. Yet, accuracy is high when the data fits the model well. The purpose of this paper is to design and implement a document classification system for identifying entity problems using text/data mining combination, supplemented by rich data mining algorithms to enhance its performance. we propose RTP ost system of different style from any traditional method, which takes fault tolerant system approach and data mining strategy. This feedback cycle can enhance the performance of the text mining in terms of accuracy. We experimented our system for classifying RB-related documents on PubMed abstracts to verify the feasibility.

  • PDF

Data Mining Model Approach for The Risk Factor of BMI - By Medical Examination of Health Data -

  • Lee Jea-Young;Lee Yong-Won
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.217-227
    • /
    • 2005
  • The data mining is a new approach to extract useful information through effective analysis of huge data in numerous fields. We utilized this data mining technique to analyze medical record of 35,671 people. Whole data were assorted by BMI score and divided into two groups. We tried to find out BMI risk factor from overweight group by analyzing the raw data with data mining approach. The result extracted by C5.0 decision tree method showed that important risk factors for BMI score are triglyceride, gender, age and HDL cholesterol. Odds ratio of major risk factors were calculated to show individual effect of each factors.

Genetic Algorithm Application to Machine Learning

  • Han, Myung-mook;Lee, Yill-byung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.633-640
    • /
    • 2001
  • In this paper we examine the machine learning issues raised by the domain of the Intrusion Detection Systems(IDS), which have difficulty successfully classifying intruders. There systems also require a significant amount of computational overhead making it difficult to create robust real-time IDS. Machine learning techniques can reduce the human effort required to build these systems and can improve their performance. Genetic algorithms are used to improve the performance of search problems, while data mining has been used for data analysis. Data Mining is the exploration and analysis of large quantities of data to discover meaningful patterns and rules. Among the tasks for data mining, we concentrate the classification task. Since classification is the basic element of human way of thinking, it is a well-studied problem in a wide variety of application. In this paper, we propose a classifier system based on genetic algorithm, and the proposed system is evaluated by applying it to IDS problem related to classification task in data mining. We report our experiments in using these method on KDD audit data.

  • PDF

Industrial Waste Database Analysis Using Data Mining

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.241-251
    • /
    • 2006
  • Data mining is the method to find useful information for large amounts of data in database It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are decision tree, association rules, clustering, neural network and so on. We analyze industrial waste database using data mining technique. We use k-means algorithm for clustering and C5.0 algorithm for decision tree and Apriori algorithm for association rule. We can use these analysis outputs for environmental preservation and environmental improvement.

  • PDF

Sensorless Control of Wound Rotor Synchronous Machines Based on High-frequency Signal Injection into the Stator Windings

  • Chen, Zhiguo;Deng, Xianming;Huang, Kun;Zhen, Wenhuan;Wang, Lei
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.669-678
    • /
    • 2013
  • This paper proposes a sensorless control approach for Wound Rotor Synchronous Machines (WRSMs) based on a high frequency voltage signal injection into the stator side U phase and VW line, respectively. Considering the machine itself as a rotor position sensor, the rotor position observer is established according to the principles of the rotary transformer. A demodulation method for the high frequency signal inducted in the rotor is proposed as well. Simulation and experimental results show that the proposed sensorless control approach has high performance and good practicability.

Development of Data Mining System for Ship Design using Combined Genetic Programming with Self Organizing Map (유전적 프로그래밍과 SOM을 결합한 개선된 선박 설계용 데이터 마이닝 시스템 개발)

  • Lee, Kyung-Ho;Park, Jong-Hoon;Han, Young-Soo;Choi, Si-Young
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.6
    • /
    • pp.382-389
    • /
    • 2009
  • Recently, knowledge management has been required in companies as a tool of competitiveness. Companies have constructed Enterprise Resource Planning(ERP) system in order to manage huge knowledge. But, it is not easy to formalize knowledge in organization. We focused on data mining system by genetic programming(GP). Data mining system by genetic programming can be useful tools to derive and extract the necessary information and knowledge from the huge accumulated data. However when we don't have enough amounts of data to perform the learning process of genetic programming, we have to reduce input parameter(s) or increase number of learning or training data. In this study, an enhanced data mining method combining Genetic Programming with Self organizing map, that reduces the number of input parameters, is suggested. Experiment results through a prototype implementation are also discussed.