• Title/Summary/Keyword: Minimum-time

Search Result 4,120, Processing Time 0.029 seconds

A Comparative Study on the Efficient Reordering Methods of Sparse Matrix Problem for Large-scale Surveying Network Adjustment (대규모 측지망 조정을 위한 희소 행렬의 효율적인 재배열 방법에 대한 비교 연구)

  • Woo, Sun-Kyu;Yun, Kong-Hyun;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.85-91
    • /
    • 2008
  • When a large sparse matrix is calculated for a horizontal geodetic network adjustment, it needs to go through the process of matrix reordering for the efficiency of time and space. In this study, several reordering methods for sparse matrix were tested, using Sparse Matrix Manipulation System(SMMS) program, total processing time and Fill-in number produced in factorization process were measured and compared. As a result, Minimum Degree(MD) and Mutiple Minimum Degree(MMD), which are based on Minimum Degree are better than Gibbs-Poole-Stockmeyer(GPS) and Reverse Cuthill-Mckee(RCM), which are based on Minimum Bandwidth. However, the method of the best efficiency can be changed dependent on distribution of non-zero elements in a matrix. This finding could be applied to heighten the efficiency of time and storage space for national datum readjustment and other large geodetic network adjustment.

Design of a Disturbance Observer Using a Second-Order System Plus Dead Time Modeling Technique (시간 지연을 갖는 2차 시스템 모델링 기법을 이용한 외란 관측기 설계)

  • Jeong, Goo-Jong;Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.187-192
    • /
    • 2009
  • This paper presents a method for designing a robust controller that alleviates disturbance effects and compensates performance degradation owing to the time-delay. Disturbance observer(DOB) approach as a tool of robust control has been widely employed in industry. However, since the Pade approximation of time-delay makes the plant non-minimum phase, the classical DOB cannot be applied directly to the system with time-delay. By using a new DOB structure for non-minimum phase systems together with the Smith Predictor, we propose a new controller for reducing the both effects of disturbance and time-delay. Moreover, the closed-loop system can be made robust against uncertain time-delay with the help of a Pill controller tuning method that is based on a second-order plus dead time modeling technique.

Determination of Minimum Eigenvalue in a Continuous-time Weighted Least Squares Estimator (연속시간 하중최소자승 식별기의 최소고우치 결정)

  • Kim, Sung-Duck
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.1021-1030
    • /
    • 1992
  • When using a least squares estimator with exponential forgetting factor to identify continuous-time deterministic system, the problem of determining minimum eigenvalue is described in this paper. It is well known fact that the convergence rate of parameter estimates relies on various factors consisting of the estimator and especially, theirproperties can be directly affected by all eigenvalues in the parameter error differential equation. Fortunately, there exists only one adjusting eigenvalue in the given estimator and then, the parameter convergence rates depend on this minimum eigenvalue. In this note, a new result to determine the minimum eigenvalue is proposed. Under the assumption that the input has as many spectral lines as the number of parameter estimates, it can be proven that the minimum eigenvalue converges to a constant value, which is a function of the forgetting factor and the parameter estimates number.

  • PDF

Brachistochrone Minimum-Time Trajectory Control Using Neural Networks (신경회로망에 의한 Brachistochrone 최소시간 궤적제어)

  • Choi, Young-Kiu;Park, Jin-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2775-2784
    • /
    • 2013
  • A bead is intended to reach a specified target point in the minimum-time when it travels along a certain curve on a vertical plane with the gravity. This is called the brachistochrone problem. Its minimum-time control input may be found using the calculus of variation. However, the accuracy of its minimum-time control input is not high since the solution of the control input is based on a table form of inverse relations for some complicated nonlinear equations. To enhance the accuracy, this paper employs the neural network to represent the inverse relation of the complicated nonlinear equations. The accurate minimum-time control is possible with the interpolation property of the neural network. For various final target points, we have found that the proposed method is superior to the conventional ones through the computer simulations.

Polynomial Time Algorithm for Satellite Communications Scheduling Problem with Capacity Constrainted Transponder

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.6
    • /
    • pp.47-53
    • /
    • 2016
  • This paper deals with the capacity constrained time slot assignment problem(CTSAP) that a satellite switches to traffic between $m{\times}n$ ground stations using on-board $k{\leq}_{min}\{m,n\}$ k-transponders switching modes in SS/TDMA time-division technology. There was no polynomial time algorithm to solve the optimal solution thus this problem classified by NP-hard. This paper suggests a heuristic algorithm with O(mn) time complexity to solve the optimal solution for this problem. Firstly, the proposed algorithm selects maximum packet lengths of $\({mn \atop c}\)$ combination and transmits the cut of minimum packet length in each switching mode(MSMC). In the case of last switching mode with inefficient transmission, we applies a compensation strategy to obtain the minimum number of switching modes and the minimum makespan. The proposed algorithm finds optimal solution in polynomial time for all of the experimental data.

Analysis of Employment Effect of the Minimum Wage Using Time Series Data (시계열 자료를 이용한 최저임금의 고용효과 분석)

  • Kang, Seungbok;Park, Cheolsung
    • Journal of Labour Economics
    • /
    • v.38 no.3
    • /
    • pp.1-22
    • /
    • 2015
  • We analyze the effect of the minimum wage on employment using time series data forr groups of individuals most affected by the minimum wage: young males (18 to 24 years old), young females (18 to 22 years old), old males (60 years and older) and old females (60 years and older). Our findings are as follows. First, a unit root test says that the variables like minimum wages and employments are non-stationary variables and they have cointegrational relations each other. It says that in this case, VEC is more suitable than OLS or VAR. Second, an increase of the minimum wage is found to have a weak but persistently negative effect on employment.

  • PDF

An Algorithm for Minimum Feedback Edge Set Problem (최소 되먹임 간선 집합 문제 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.3
    • /
    • pp.107-113
    • /
    • 2015
  • This paper presents a polynomial time algorithm to the minimum cardinality feedback edge set and minimum weight feedback edge set problems. The algorithm makes use of the property wherein the sum of the minimum spanning tree edge set and the minimum feedback edge set equals a given graph's edge set. In other words, the minimum feedback edge set is inherently a complementary set of the former. The proposed algorithm, in pursuit of the optimal solution, modifies the minimum spanning tree finding Kruskal's algorithm so as to arrange the weight of edges in a descending order and to assign cycle-deficient edges to the maximum spanning tree edge set MXST and cycle-containing edges to the feedback edge set FES. This algorithm runs with linear time complexity, whose execution time corresponds to the number of edges of the graph. When extensively tested on various undirected graphs both with and without the weighed edge, the proposed algorithm has obtained the optimal solutions with 100% success and accuracy.

Eigen-Analysis Based Super-Resolution Time Delay Estimation Algorithms for Spread Spectrum Signals (대역 확산 신호를 위한 고유치 해석 기반의 초 분해능 지연 시간 추정 알고리즘)

  • Park, Hyung-Rae;Shin, Joon-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.1013-1020
    • /
    • 2013
  • In this paper the super-resolution time delay estimation algorithms based on eigen-analysis are developed for spread spectrum signals along with their comparative performance analysis. First, we shall develop super-resolution time delay estimation algorithms using the representative eigen-analysis based AOA (angle-of-arrival) estimation algorithms such as MUSIC, Minimum-Norm, and ESPRIT, and apply them to the ISO/IEC 24730-2.1 real-time locating system (RTLS) employing a direct sequence spread spectrum (DS-SS) technique to compare their performances in RTLS environments. Simulation results illustrate that all the three algorithms can resolve multipath signals whose delay differences are even smaller than the Rayleigh resolution limit. Simulation results also show that MUSIC and Minimum-Norm provide a similar performance while ESPRIT is inferior to both algorithms in RTLS environments.

The Method of the Phase Split Adjustment Considering the Minimum Green time in COSMOS (COSMOS에서 최소녹색시간을 고려한 현시배분 보정방안 연구)

  • Kang, Da-Mi;Oh, Young-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.147-154
    • /
    • 2004
  • The purpose of this paper is to improve the existing phase split algorithm considering the minimum green time in COSMOS. In the case of a signalized intersection where two wide and narrow streets intersect each other, the time required for the pedestrian crossing is frequently longer than the time alloted to the through traffic on a minor street. In order to meet the minimum green time requirement for the pedestrian less time in alloted automatically to the left-turn traffic, creating heavy congestion on the left-turn approach. To solve this problem, this study suggests a new algorithm which shares the barrier using minimum green time and shares the burden with signal phases alloted to the crossing street traffic on the basis of the equal ratio of the degree of saturation, while maintaining the minimum green time requirement. The new algorithm was compared with the existing algorithm by using a microscopic simulation model for COSMOS evaluation developed at Ajou University. The simulation results show that the new algorithm produces better performance than the existing one.

The Performance Analysis of CPU scheduling Algorithms in Operating Systems

  • Thangakumar Jeyaprakash;Ranjana P;Sambath M
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.165-170
    • /
    • 2023
  • Scheduling algorithms plays a significant role in optimizing the CPU in operating system. Each scheduling algorithms schedules the processes in the ready queue with its own algorithm design and its properties. In this paper, the performance analysis of First come First serve scheduling, Non preemptive scheduling, Preemptive scheduling, Shortest Job scheduling and Round Robin algorithm has been discussed with an example and the results has been analyzed with the performance parameters such as minimum waiting time, minimum turnaround time and Response time.