• Title/Summary/Keyword: Minimum rotor speed

Search Result 40, Processing Time 0.028 seconds

Coupled Unbalance Response Analyses of a Geared Two-shaft Rotor-bearing System (기어 전동 2축 로터-베어링 시스템의 연성 불균형 응답해석)

  • 이안성;하진웅
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.598-604
    • /
    • 2003
  • In this paper a general solution method is presented to obtain the unbalance response orbit from the finite element based equations of motion of a gear-coupled two-shaft rotor-bearing system, whose shafts rotate at their different speeds from each other. Particularly, are proposed analytical solutions of the maximum and minimum radii of the orbit. The method has been applied to analyze the unbalance response of a 800 refrigeration-ton turbo-chiller rotor-bearing system having a bull-pinion speed increasing gear. Bumps in the unbalance response of the driven high speed compressor rotor system have been observed at the first torsional natural frequency due to the coupling effect of lateral and torsional dynamics. Further, the proposed analytical solutions have agreed well with those obtained by a full numerical approach. The proposed analytical solutions can be generally applied to obtain the maximum and minimum radii of the unbalance response orbits of dual-shaft rotor-bearing systems coupled by bearings as well.

Loss Minimization of DFIG for Wind Power Generation

  • Abo-Khalil, Ahmed G.;Park, Hong-Geuk;Lee, Dong-Choon;Lee, Se-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.315-317
    • /
    • 2007
  • This paper proposes a loss minimization algorithm for doubly-fed induction generator (DFIG) by controlling the stator reactive power. The proposed strategy directly controls the rotor current to achieve the operating point of minimum generator loss and maximum power point tracking. The maximum power is obtained by tracking the q-axis rotor current with generator speed variation and the minimum generator loss is achieved by controlling the d-axis rotor current. Experimental results are shown to verify the validity of the proposed scheme.

  • PDF

Speed Sensorless Vector Control of Induction Motors Using a Minimum-order Extended Kalman Filter (최소 차수 확장 칼만 필터를 이용한 속도센서 없는 유도전동기 벡터제어)

  • Lee, Seung-Hyun;Chung, Gyo-Bum
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.171-175
    • /
    • 1998
  • This paper proposes a speed sensorless vector control of induction motor using a minimum-order EKF(extended kalman filter). Minimum-order EKF has the advantage of reducing the computational estimation cost because the stator current is not estimated. EKF does not deteriorate the performance of the overall speed control system, even though the measurements are relatively noisy. The estimated rotor speed is used for vector control and overall speed control. Computer simulations of the speed sensorless vector control are carried out to test the usefulness of the minimum-order EKF algorithm.

  • PDF

IPMSM Design for Sensorless Control Considering Magnetic Neutral Point Shift According to Magnetic Saturation

  • Choi, JaeWan;Seol, Hyun-Soo;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.752-760
    • /
    • 2018
  • In this paper, interior permanent magnet synchronous motor (IPMSM) design for sensorless drive, considering magnetic neutral point shift according to magnetic saturation, has been proposed. Sensorless control was divided into a method based on inductance and a method based on back induced voltage. Because induced voltage is very small at zero or low speed, error in rotor initial position estimation may occur. Using the ratio of saliency addresses this problem. When using high-frequency injections at low speed, the rotor's initial position is estimated at the smallest portion of the inductance. IPMSM has the minimum inductance at the d-axis. However, if magnetic saturation leads to magnetic neutral point variation, following the load current change, there is a change in the minimum point of inductance. In this case, it can lead to failure of initial rotor position estimation. As a result, it is essential that the blocking design has an inductance minimum point shift. As such, in this study, an IPMSM design method, by blocking magnetic neutral point change, has been proposed. After determining the inductance profile based on the finite element analysis (FEA), the results of proposed method were verified.

Vibration Optimum Design for Hypercritical Rotor System Using Genetic Algorithm (유전 알고리즘을 이용한 초임계 회전축계의 진동 최적 설계)

  • 최병근;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.313-318
    • /
    • 1996
  • In this paper, a parametric study of the unbalance response and the stability is carried out to show the influence of seal parameters on the response of rotor. The seal parameters optimized are the seal clearance and the seal length. The minimum quantity of a Q factor in the critical speed and the maximum quantity of a logarithmic decreement in the operating speed, avoiding the reign of resonance, are the objective function. This paper describes a new approach to find a seal parameter of rotor system. The optimization method is used genetic algorithms, which are search algorithms based on the mechanics of natural selection and natural genetics. The results show the capability of this method and indicate that an optimal design of seals can improve the unbalance and the stability of rotor.

  • PDF

Stepwise Inertial Control of a Doubly-Fed Induction Generator to Prevent a Second Frequency Dip

  • Kang, Mose;Lee, Jinsik;Hur, Kyeon;Park, Sang Ho;Choy, Youngdo;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2221-2227
    • /
    • 2015
  • To arrest a frequency nadir, a stepwise inertial control (SIC) scheme generates a constant active power reference signal of a wind turbine generator (WTG) immediately after a disturbance and maintains it for the predetermined time. From that point, however, the reference of a WTG abruptly decreases to restore the rotor speed for the predefined period. The abrupt decrease of WTG output power will inevitably cause a second frequency dip. In this paper, we propose a modified SIC scheme of a doubly-fed induction generator (DFIG) that can prevent a second frequency dip. A reference value of the modified SIC scheme consists of a reference for the maximum power point tracking control and a constant value. The former is set to be proportional to the cube of the rotor speed; the latter is determined so that the rotor speed does not reach the minimum operating limit by considering the mechanical power curve of a DFIG. The performance of the modified SIC was investigated for a 100 MW aggregated DFIG-based wind power plant under various wind conditions using an EMTP-RV simulator. The results show that the proposed SIC scheme significantly increases the frequency nadir without causing a second frequency dip.

Stepwise inertial control of a DFIG to prevent the over-deceleration in wind speed reduction (풍속 감소 시 Over-Deceleration 방지를 위한 DFIG 풍력발전기의 계단형 출력 관성제어)

  • Kang, Moses;Lee, Jinsik;Kang, Yong Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.173-174
    • /
    • 2015
  • If a wind speed decreases during inertial control of a wind turbine generator (WTG), the rotor speed might decrease below the minimum operating limit, which is called over-deceleration (OD). When OD occurs, inertial control should be disabled and then the output power of a WTG significantly decreases. This significant power reduction causes a subsequent frequency drop. This paper proposes the stepwise inertial control to prevent OD when a wind speed decreases during inertial control. To do this, the proposed scheme changes the additional power output based on the rotor speed. The performance of the proposed scheme is investigated using an EMTP-RV simulator. The results show that the proposed inertial control scheme prevent OD even when the wind speed decreases during inertial control.

  • PDF

Induction Motor Control Using Adaptive Backstepping and MRAS (적응 백스테핑과 MRAS를 이용한 유도전동기 제어)

  • Lee, Sun-Young;Park, Ki-Kwang;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.77-78
    • /
    • 2008
  • This paper presents to control speed of induction motors with uncertainties. We use an adaptive backstepping controller with fuzzy neural networks(FNNs) and model reference adaptive system(MRAS) at Indirect vector control method. The adaptive backstepping controller using FNNs can control speed of induction motors even we have a minimum of information. And this controller can be used to approximate most of uncertainties which are derived from unknown motor parameters, load torque such as disturbances. MRAS estimates to rotor resistance and also can find optimal flux to minimize power losses of Induction motor. Indirect vector PI current controller is used to keep rotor flux constant without measuring or estimating the rotor flux. Simulation and experiment results are verified the effectiveness of this proposed approach.

  • PDF

Journal Bearing Design Retrofit for Process Large Motor-Generator - Part II : Rotordynamics Analysis (프로세스 대형 모터-발전기의 저어널 베어링 설계 개선 - Part II : 로터다이나믹스 해석)

  • Lee, An Sung
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.265-271
    • /
    • 2012
  • In the preceding Part I study, for improving the unbalance response vibration of a large PRT motor-generator rotor fundamentally by design, a series of design analyses were carried out for bearing improvement by retrofitting from original plain partial journal bearings, applied for operation at a rated speed of 1,800 rpm, to final tilting pad journal bearings. To satisfy evenly key basic lubrication performances such as the minimum lift-off speed and maximum oil-film temperature, a design solution of 5-pad tilting pad journal bearings and maximizing the direct stiffness by about two times has been achieved. In this Part II study, a detailed rotordynamic analysis of the large PRT motor-generator rotor-bearing system will be performed, applying both the original plain partial journal bearings and the retrofitted tilting pad journal bearings, to confirm the effect of rotordynamic vibration improvement after retrofitting. The results show that the rotor unbalance response vibrations with the tilting pad journal bearings are greatly reduced by as much as about one ninth of those with the plain partial journal bearings. In addition, for the tilting pad journal bearings there exist no critical speed up to the rated speed and just one instance of a concerned critical speed around the rated speed, whereas for the plain partial journal bearings there exist one instance of a critical speed up to the rated speed and two instances of concerned critical speeds around the rated speed.

Modal Model Reduction for Vibration Control of Flexible Rotor Supported by Active Magnetic Bearing

  • Jeon, Han-Wook;Lee, Chong-Won;Seto, Kazuto
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.290-293
    • /
    • 2008
  • This paper proposes a criterion to select the modes for modal truncated model of flexible rotor only supported by active magnetic bearings. The proposed approach relies on the concepts of minimum control input and output energy assuming that the system is subjected to transient disturbances. Accurate large order model for the levitated rotor is taken by finite element analysis and transformed to the modal equation. By proposed methodology, which modal states should be retained in the truncated model are investigated over the whole operational speed range by the calculation. Finally, the effectiveness is verified by checking the model error between original model and reduced model.

  • PDF