• Title/Summary/Keyword: Minimum response time

Search Result 271, Processing Time 0.027 seconds

A Study on Daily Torpor in the Korean Striped Field Mouse (Apodemus agrarius) (등줄쥐(Apodemus agrarius)의 일중휴면에 관한 연구)

  • Yoon, Myung-Hee;Han, Chang-Wook
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.618-625
    • /
    • 2006
  • Patterns of induced daily torpor were measured in the striped field mouse, Apodemus agrarius, in response to low temperature, food deprivation and various photoperiods using implanted data loggers. A total of 8 of 21 females entered daily torpor in response to low outside ambient temperature (Ta) during winter and spring, constant low Ta $(4^{\circ}C)$ or food deprivation $(23^{\circ}C)$ during summer, but 2 of 23 males did only in response to low outside Ta during winter. This fact indicates that torpor is an adaptive hypothermia to unpredictable environment in both some males and females, as well as that torpor was inhibited in males in the reproductive season as in other mammals, which is regarded as a strategy not to reduce the chance of copulation. As for females, however, torpor was employed in response to unpredictable environment even in the reproductive season, suggesting that alternative strategies other than keeping the chance of copulation maybe hired by females to keep the population. Torpor bout generally began at $6{\sim}12$ AM, but the decrease of body temperature $(T_b)$ began mainly at $4{\sim}6$ AM at any conditions, the time when Ta is lowest. This strategy might be also adopted for reducing heat loss to unpredictable environment. Minimum $T_b$ of both males and females during torpor did not fall below $16.5^{\circ}C$. Photoperiod had no influence on the incidence and timing of daily torpor in either males and females. The similar timing of torpor bout in response to the 3 different photoperiods (24D, 16L:8D or 8L:16D) under the constant temperatures $(4^{\circ}C\;or\;23{\pm}2^{\circ}C)$ suggests that entering time of torpor might be controlled by the circadian rhythm of the mice rather than by the photoperiod.

System identification of steel framed structures with semi-rigid connections

  • Katkhuda, Hasan N.;Dwairi, Hazim M.;Shatarat, Nasim
    • Structural Engineering and Mechanics
    • /
    • v.34 no.3
    • /
    • pp.351-366
    • /
    • 2010
  • A novel system identification and structural health assessment procedure of steel framed structures with semi-rigid connections is presented in this paper. It is capable of detecting damages at the local element level under normal operating conditions; i.e., serviceability limit state. The procedure is a linear time-domain system identification technique in which the structure responses are required, whereas the dynamic excitation force is not required to identify the structural parameters. The procedure tracks changes in the stiffness properties of all the elements in a structure. It can identify damage-free and damaged structural elements very accurately when excited by different types of dynamic loadings. The method is elaborated with the help of several numerical examples. The results indicate that the proposed algorithm identified the structures correctly and detected the pre-imposed damages in the frames when excited by earthquake, impact, and harmonic loadings. The algorithm can potentially be used for structural health assessment and monitoring of existing structures with minimum disruption of operations. Since the procedure requires only a few time points of response information, it is expected to be economic and efficient.

Impact identification and localization using a sample-force-dictionary - General Theory and its applications to beam structures

  • Ginsberg, Daniel;Fritzen, Claus-Peter
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.3
    • /
    • pp.195-214
    • /
    • 2016
  • Monitoring of impact loads is a very important technique in the field of structural health monitoring (SHM). However, in most cases it is not possible to measure impact events directly, so they need to be reconstructed. Impact load reconstruction refers to the problem of estimating an input to a dynamic system when the system output and the impulse response function are usually known. Generally this leads to a so called ill-posed inverse problem. It is reasonable to use prior knowledge of the force in order to develop more suitable reconstruction strategies and to increase accuracy. An impact event is characterized by a short time duration and a spatial concentration. Moreover the force time history of an impact has a specific shape, which also can be taken into account. In this contribution these properties of the external force are employed to create a sample-force-dictionary and thus to transform the ill-posed problem into a sparse recovery task. The sparse solution is acquired by solving a minimization problem known as basis pursuit denoising (BPDN). The reconstruction approach shown here is capable to estimate simultaneously the magnitude of the impact and the impact location, with a minimum number of accelerometers. The possibility of reconstructing the impact based on a noisy output signal is first demonstrated with simulated measurements of a simple beam structure. Then an experimental investigation of a real beam is performed.

Improved Hybrid Symbiotic Organism Search Task-Scheduling Algorithm for Cloud Computing

  • Choe, SongIl;Li, Bo;Ri, IlNam;Paek, ChangSu;Rim, JuSong;Yun, SuBom
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3516-3541
    • /
    • 2018
  • Task scheduling is one of the most challenging aspects of cloud computing nowadays, and it plays an important role in improving overall performance in, and services from, the cloud, such as response time, cost, makespan, and throughput. A recent cloud task-scheduling algorithm based on the symbiotic organisms search (SOS) algorithm not only has fewer specific parameters, but also incurs time complexity. SOS is a newly developed metaheuristic optimization technique for solving numerical optimization problems. In this paper, the basic SOS algorithm is reduced, and chaotic local search (CLS) is integrated into the reduced SOS to improve the convergence rate. Simulated annealing (SA) is also added to help the SOS algorithm avoid being trapped in a local minimum. The performance of the proposed SA-CLS-SOS algorithm is evaluated by extensive simulation using the Matlab framework, and is compared with SOS, SA-SOS, and CLS-SOS algorithms. Simulation results show that the improved hybrid SOS performs better than SOS, SA-SOS, and CLS-SOS in terms of convergence speed and makespan.

The Design of a Ultra-Low Power RF Wakeup Sensor for Wireless Sensor Networks

  • Lee, Sang Hoon;Bae, Yong Soo;Choi, Lynn
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.201-209
    • /
    • 2016
  • In wireless sensor networks (WSNs) duty cycling has been an imperative choice to reduce idle listening but it introduces sleep delay. Thus, the conventional WSN medium access control protocols are bound by the energy-latency tradeoff. To break through the tradeoff, we propose a radio wave sensor called radio frequency (RF) wakeup sensor that is dedicated to sense the presence of a RF signal. The distinctive feature of our design is that the RF wakeup sensor can provide the same sensitivity but with two orders of magnitude less energy than the underlying RF module. With RF wakeup sensor a sensor node no longer requires duty cycling. Instead, it can maintain a sleep state until its RF wakeup sensor detects a communication signal. According to our analysis, the response time of the RF wakeup sensor is much shorter than the minimum transmission time of a typical communication module. Therefore, we apply duty cycling to the RF wakeup sensor to further reduce the energy consumption without performance degradation. We evaluate the circuital characteristics of our RF wakeup sensor design by using Advanced Design System 2009 simulator. The results show that RF wakeup sensor allows a sensor node to completely turn off their communication module by performing the around-the-clock carrier sensing while it consumes only 0.07% energy of an idle communication module.

Modelling of seismically induced storey-drift in buildings

  • Lam, Nelson;Wilson, John;Lumantarna, Elisa
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.459-478
    • /
    • 2010
  • This paper contains detailed descriptions of a dynamic time-history modal analysis to calculate deflection, inter-storey drift and storey shear demand in single-storey and multi-storey buildings using an EXCEL spreadsheet. The developed spreadsheets can be used to obtain estimates of the dynamic response parameters with minimum input information, and is therefore ideal for supporting the conceptual design of tall building structures, or any other structures, in the early stages of the design process. No commercial packages, when customised, could compete with spreadsheets in terms of simplicity, portability, versatility and transparency. An innovative method for developing the stiffness matrix for the lateral load resistant elements in medium-rise and high-rise buildings is also introduced. The method involves minimal use of memory space and computational time, and yet allows for variations in the sectional properties of the lateral load resisting elements up the height of the building and the coupling of moment frames with structural walls by diaphragm action. Numerical examples are used throughout the paper to illustrate the development and use of the spreadsheet programs.

Life-cycle cost optimization of steel moment-frame structures: performance-based seismic design approach

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.271-294
    • /
    • 2014
  • In recent years, along with the advances made in performance-based design optimization, the need for fast calculation of response parameters in dynamic analysis procedures has become an important issue. The main problem in this field is the extremely high computational demand of time-history analyses which may convert the solution algorithm to illogical ones. Two simplifying strategies have shown to be very effective in tackling this problem; first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication, second, wavelet analysis of earthquake records decreasing the number of acceleration points involved in time-history loading. In this paper, we try to develop an efficient framework, using both strategies, to solve the performance-based multi-objective optimal design problem considering the initial cost and the seismic damage cost of steel moment-frame structures. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency (FEMA) recommended design specifications. The results from numerical application of the proposed framework demonstrate the capabilities of the framework in solving the present multi-objective optimization problem.

What are Legible Korean Font Sizes within In-Vehicle Information Systems?

  • Kim, Huhn;Park, Soo-Hyun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.397-406
    • /
    • 2012
  • Objective: The aim of this study is to determine legible Korean font sizes within in-vehicle information systems(IVISs) in diving conditions. Background: Font legibility within IVISs is one of important causes on its' safe operations during driving. Several researches proposed some guidelines on the legible English font sizes within IVISs. On the contrary, appropriate Korean font sizes have been hardly known in spite of the typological differences between English and Korean. Therefore, more systematic researches for improving the legibility on Korean font size within IVISs have been required. Method: In this study, an experiment was performed with the following experimental factors: the existence of vibration, the color contrasts(white on black, black on white), the font types(HDR, CubeR, Gothic), and the font sizes(6, 8, 10, 12, 14, 16, 18, 20, 22, 24pt). To fit the experimental conditions into real driving environments, the illuminance was controlled to 15lx by using LED lamp and the distance between IVIS and participants was kept to 70cm. Moreover, all participants took the shutter glasses for employing well-known occlusion techniques. Results: The experimental results showed that 'HDR' and 'Non-vibration + Black on white' group took the shortest response time, and decreasing slopes of the response time with increasing font sizes were slowing down at 14pt then flattened out at 22pt regardless of the existence of vibration and color contrasts. Conclusion: The minimum size for legible Korean font would be about 14pt(5.47mm) and the optimum size would be about 22pt(8.59mm). Application: The guideline on the Korean font sizes from this study will be applied to design an IVIS in the future.

Design and Implementation of Wideband Ultra-Fast High Precision Frequency Synthesizer for ELINT Equipment (ELINT 장비용 광대역 초고속 고정밀 주파수 합성기 설계 및 구현)

  • Lee, Kyu-Song;Jeon, Kye-Ik;Oh, Seung-Hyeub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1178-1185
    • /
    • 2009
  • In this paper, a wideband ultra-high speed & high purity discrete frequency synthesizer having minimum 2.5 MHz step size was proposed. To achieve fast and wideband operation, discrete frequencies were synthesized by mixing of 3 different pre-synthesized 16 frequencies made from fixed PLL and frequency dividers. Frequencies with discrete 2.5 MHz step were produced in 710~1,610 MHz. The measured hopping response time was 350 nsec average, output level was 21.5 dBm average with 2.65 dB flatness, spurious and harmonics level were suppressed below -60 dBc, and phase noise was -94 dBc/Hz@100 Hz. Also, a new measurement method for synthesizer response time was described.

Spatial Index based on Main Memory for Web CIS (Web GIS를 위한 주기억 장치 기반 공간 색인)

  • 김진덕;진교홍
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.191-194
    • /
    • 2001
  • The availability of the inexpensive, large main memories coupled with the demand for faster response time are bringing a new perspective to database technology. The Web GIS used by u unspecified number of general public in the internet needs high speed response time and frequent data retrieval for spatial analysis rather than data update. Therefore, it is appropriate to use main memory as a underlying storage structures for the Web GIS data. In this paper, we propose a data representation method based on relative coordinates and the size of the MBR. The method is able to compress the spatial data widely used in the Web GIS into smaller volume of memory. We also propose a memory resident spatial index with simple mechanism for processing point and region queries. The performance test shows that the index is suitable for managing the skewed data in terms of the size of the index and the number of the MBR intersection check operations.

  • PDF