• Title/Summary/Keyword: Minimum relative distance

Search Result 63, Processing Time 0.027 seconds

A Study on Setting the Minimum and Maximum Distances for Distance Attenuation in MPEG-I Immersive Audio

  • Lee, Yong Ju;Yoo Jae-hyoun;Jang, Daeyoung;Kang, Kyeongok;Lee, Taejin
    • Journal of Broadcast Engineering
    • /
    • v.27 no.7
    • /
    • pp.974-984
    • /
    • 2022
  • In this paper, we introduce the minimum and maximum distance setting methods used in geometric distance attenuation processing, which is one of spatial sound reproduction methods. In general, sound attenuation by distance is inversely proportional to distance, that is 1/r law, but when the relative distance between the user and the audio object is very short or long, exceptional processing might be performed by setting the minimum distance or the maximum distance. While MPEG-I Immersive Audio's RM0 uses fixed values for the minimum and maximum distances, this study proposes effective methods for setting the distances considering the signal gain of an audio object. Proposed methods were verified through simulation of the proposed methods and experiments using RM0 renderer.

The Quantitative Analysis on the Criterion Elements for Collision Avoidance Action in Collision Avoidance maneuver and Its Application (피항조선시의 피항개시기준요소의 양적파악 및 그 이용에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.25-34
    • /
    • 1999
  • The Steering and Sailing Rules of International Regulation for Preventing Collisions at Sea now in use direct actions to avoid collision when two power-driven vessels are meeting on reciprocal or nearly reciprocal courses so as to involve risk of collision. But these rules do not refer to the minimum relative distances and safety relative distances between two vessels when they should take such actions.In this paper the ship's collision avoiding actions being analyzed from a viewpoint of ship motions, the mathematical formulas to calculate such relative distances necessary for taking actions to avoid collision were worked out. The values of maneuvering indices being figured out through experiments of 20 actual ships of small, medium, large and mammoth size and applied to calculating formulas, the minimum relative distances and safety relative distances were calculated. The main results were as follows. 1. It was confirmed that the criterion elements for collision avoiding actions in head-on situation of two vessels shall be the minimum relative distances and safety relative distances between them. 2. On the assumption that two vessels same in size and condition were approaching each other in head-on situation, the minimum relative distance of small vessel(GT : 160~650tons) was found to be about 4.7 times her own length, and those of medium (GT:2,300~4,500tons),large(GT:15,000~62,000tons) and mommoth (GT:91,000~194,000tons) vessels were found to be about 5.2 times, about 5.2 times and about 6.1 times their own lengths respectively. 3. On the assumption that two vessels same in size and condition were approaching each other in head-on situation, the safe relative distance of small vessel (GT : 160~650tons) was found to be about 6.8 times her own length, and those of medium (GT : 2,300~4,500tons), large (GT: 15,000~62,000tons) and mammoth (GT : 91,000~194,000tons) vessels were found to be about 9.0 times, about 6.3 times, and about 8.0 times their own lengths respectively. 4. It is considered to be helpful for the safety of ship handling that the sufficient safe relative distances for every vessels shall be more than about 12~14 times which are 2 times minimum relative distance, their own length on above assumption.

  • PDF

Effect of Turning Characteristics of Maritime Autonomous Surface Ships on Collision Avoidance (자율운항선박의 선회특성이 충돌회피에 미치는 영향)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.45 no.6
    • /
    • pp.298-305
    • /
    • 2021
  • Identifying the effect of turning characteristics on collision avoidance for Maritime Autonomous Surface Ships (MASS) can provide a key to avoid the collision of MASS. The purpose of this study was to derive a method to identify the effect of turning characteristics, which can be changed by various rudder angles and the ship's speed, on collision avoidance. The turning circle was observed using a mathematical model of a 161-meter-long ship, and it was analyzed that the turning circle had an effect on collision avoidance through numerical simulations of collision avoidance for four collision situations of two ships. The evaluation results using the two variables, the minimum relative distance between two ships and the minimum time at the minimum relative distance, demonstrated that the rudder angle has a major influence on the change of the minimum relative distance, and the ship's speed has a major influence on the change of the minimum time. The evaluation method proposed in this study was expected to be applicable to collision avoidance as a measures in remote control of MASS.

A Study on the Minimum Safe Distance Index of Filipino Navigators in the Vicinity of Obstacles and in Adverse Weather Conditions

  • Dimailig, Orlando S.;Jeong, Jae-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.250-257
    • /
    • 2017
  • This paper investigates minimum safe distances relative to a ship's four cardinal sides, as perceived by Filipino navigators when encountering dangerous elements and in adverse weather conditions when maneuvering in and around harbors. It uses a descriptive research method in the form of a questionnaire survey for experienced Filipino navigators of various ranks. During the course of research, 71 responses were colleted and the resulting data is presented in graphical and tabulated forms. Statistical methods including Pearson-product moment correlations, Cronbach's Alpha and ANOVA were used to identify internal associations, consistencies and significances, respectively. It has been proven that there are no significant differences in minimum safe distances relative to a ship's four cardinal sides, whether maneuvering while approaching a port or within an inner harbor. This study has been deemed significant for training future navigators, managing traffic in fairways, and designing harbors and maneuvering areas in the approaches to ports, among other applications. This work can also be used as a preliminary study for comparison with the well known safe domains presently in use.

A Study on the Relative Distance in Taking Action to Avoid Ship`s Collision (선박충돌회피를 위한 피항개시거리에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.2
    • /
    • pp.99-105
    • /
    • 1983
  • In the Steering and Sailing Rules of International Regulations for Preventing Collicions at Sea, 1972, any relative distance between two vessels necessary for taking action to avoid collision in head-on situation is not referred. In this paper, the author analyzed the ship's collision avoiding actions from a viewpoint of ship motions and worked out mathematical formulas to calculate the relative distances necessary for collision avoiding actions. Figuring out the values of maneuvering indices through experiments of actual ships, the author applied these values to the calculationg formulas and calculated the minimum safe relative distances. On the assumption that two vessels same in size and condition are approaching each other in head-on situation, the minimum safe relative distance was calculated as 5.0 times, sufficient safe relative one as 10.0 times their own length.

  • PDF

Formation Algorithm with Local Minimum Escape for Unicycle Robots (유니사이클 로봇을 위한 지역최소점 탈출을 갖춘 포메이션 알고리즘)

  • Jung, Hahmin;Kim, Dong Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.349-356
    • /
    • 2013
  • This paper presents formation control based on potential functions for unicycle robots. The unicycle robots move to formation position which is made from a reference point and neighboring robots. In the framework, a local minimum case occurred by combination of potential repulsed from neighboring robots and potential attracted from a formation line is presented, in which the robot escapes from a local minimum using a virtual escape point after recognizing trapped situation. As well, in the paper, potential functions are designed to keep the same distance between neighboring robots on a formation line, i.e. the relative distance between neighboring robots on a formation line is controlled by a potential function parameter. The simulation results show that the proposed approach can effectively construct straight line, V, and polygon formation for multiple robots.

A Study on the Evaluation Method of ACC Test Using Monocular Camera (단안카메라를 활용한 ACC 시험평가 방법에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.3
    • /
    • pp.43-51
    • /
    • 2020
  • Currently, the second level of the six stages of self-driving technology, as defined by SAE, is commercialized, and the third level is preparing for commercialization. The purpose of ACC is to be evaluated as a system useful for preventing and preventing accidents by minimizing driver fatigue through longitudinal speed control and relative distance control of the vehicle. In this regard, for the study of safety assessment methods in the practical environment of ACC. Distance measurement method using monocular camera and data acquisition equipment such as DGPS are utilized. Based on the evaluation scenario considering the domestic road environment proposed by the preceding study, the relative distance obtained from equipment such as DPGS and the relative distance using a monocular camera in the actual test is verified by comparing and analyzing the safety assessment. The comparison by scenario results showed a minimum error rate of 3.83% in Scenario 1 and a maximum of 14.61% in Scenario 6. The cause of the maximum error is that the lane recognition is not accurate in the camera image and irregular operation conditions such as rushing in or exiting the surrounding area from the walkway. It is expected that safety evaluation using a monocular camera will be possible for other ADAS systems in the future.

Evaluation of Raingauge Networks in the Soyanggang Dam River Basin (소양강댐 유역의 강우관측망 적정성 평가)

  • Kim, Jae-Bok;Bae, Young-Dae;Park, Bong-Jin;Kim, Jae-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.178-182
    • /
    • 2007
  • In this study, we evaluated current raingauge network of Soyanggang dam region applying spatial-correlation analysis and Entropy theory to recommend an optimized raingauge network. In the process of analysis, correlation distance of raingauge stations is estimated and evaluated via spatial-correlation method and entropy method. From this correlation distances, respective influencing radii of each dataset and each methods is assessed. The result of correlation and entropy analysis has estimated correlation distance of 25.546km and influence radius of 7.206km, deducing a decrease of network density from $224.53km^2$ to $122.47km^2$ which satisfy the recommended minimum densities of $250km^2$ in mountainous regions(WMO, 1994) and an increase of basin coverage from 59.3% to 86.8%. As for the elevation analysis the relative evaluation ratio increased from 0.59(current) to 0.92(optimized) resulting an obvious improvement.

  • PDF

The Relative Distance in Taking Action for Collision Avoidance Maneuver of the Stand-on Vessel (피항조선시의 유지선 피항개시거리에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.363-371
    • /
    • 1996
  • The Steering and Sailing Rules of International Regulations for Preventing Collisions at Sea now in use direct the best aid - action to avoid collision by the stand - on vessel. But these rules do not refer to the safety relative distance between two vessels when she should take such action. In this paper, the author analyzed the ship's collision avoiding actions from the viewpoint of ship motions and worked out mathematical formulas to calculate the relative distances necessary for taking action to avoid collision. Figuring out the values of maneuvering indices through experiments of 11 actual ships of small, medium, large and mammoth size, the author applied these values to the calculating formulas and calculated the minimum relative distances. The main results are as follows: 1. It was confIrmed that the stand - on vessel should keep the greatest relative distance for taking best aid - action to avoid collision when the cross angle of course was $90^{\circ}$ and near it(70-$90^{\circ}$ ). 2. When the cross angle of course was $90^{\circ}$ , the minimum relative distance of small vessel(GT: 160-650tons) was found to be more than about 6.8 times of her own length, and those of medium(GT : 2,300-3,500tons), large(GT : 22,OOO-62,OOOtons) and mammoth(GT : 91,000-139,000tons) vessels were found to be more than about 9.0 times, about 5.4 times and about 6.8 times of their own lengths. 3. It was confIrmed that collision danger was greater when crossing angle was obtuse than in an acute angle, therefore greater relative distance was to be kept by the stand - on vessel for taking best aid - action to avoid collision in the case of the obtuse angle. 4. In every vessels, in the case of $90^{\circ}$ cross angle of course the safety minimum relative distance was found to be more than about 9.0 times of their own lengths.

  • PDF

Ab Initio Study on the Structure and Energetics of (CO)2

  • Park, Young-Choon;Lee, Jae-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1421-1426
    • /
    • 2005
  • The stationary point structures and relative energies between them as well as binding energies of $(CO)_2$ have been investigated at the CCSD(T) level using the correlation-consistent basis sets aug-cc-pVXZ(X=T,Q,5). It is found that while the equilibrium structure corresponds to the C-bonded T-shaped configuration with intermolecular distance of 4.4 $\AA$, there exists another minimum, slightly higher in energy ($\sim$10 $cm^{-1}$) than the global minimum, corresponding to the O-bonded T-shaped configuration with the intermolecular distance of 3.9 $\AA$. The CCSD(T) basis set limit binding energy of $(CO)_2$ is estimated to be 132 $cm^{-1}$.