• Title/Summary/Keyword: Minimum inventory period

Search Result 9, Processing Time 0.019 seconds

The Study for EOQ md OMMIP Comparison Analysis According to Order Lead Time Change (조달기간 변동에 따른 EOQ와 OMMIP 비교분석 연구)

  • Oh Sae-Kyung;Choi Jin-Yeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2004
  • In this paper MIP(mean inventory period) Model and OMMIP decision flow have been developed. MIP model can calculate mean inventory period which is subject to the order quantity alternative plan. OMMIP decision flow leads how can decide the most minimized order quantity in mean inventory period among various order quantity alternatives. This paper also suggests how to select the order quantity with minimum inventory period as optimal order quantity by means of comparison each mean inventory period with other mean inventory period, after simulating EOQ and order quantity of OMMIP calculated in MIP model.

Single-period Stochastic Inventory Problems with Quadratic Costs

  • Song, Moon-Ho
    • Journal of the military operations research society of Korea
    • /
    • v.5 no.2
    • /
    • pp.15-25
    • /
    • 1979
  • Single-period inventory problems such as the newspaper boy problem having quadratic cost functions for both shortages and overage are examined to determine the optimal order level under various principles of choice such as minimum expected cost, aspiration level, and minimax regret. Procedures for finding the optimum order levels are developed for both continuous and discrete demand patterns.

  • PDF

Inventory Control Policies for a Hospital Blood Bank: A Simulation and Regression Approach (병원의 혈액 재고관리를 위한 평가 모형 : 시뮬레이션 및 회귀분석 방법)

  • Suh, Jeong-Dae
    • IE interfaces
    • /
    • v.10 no.1
    • /
    • pp.119-134
    • /
    • 1997
  • The management of blood inventory is very important within the medical care system. The efficient management of blood supplies and demands for transfusions is of great economic and social importance to both hospitals and patients. For any blood type, there is a complex interaction among the optimal inventory level, daily demand level, daily supply level, transfusion to crossmatch ratio, crossmatch release period, issuing policy and the age of arriving units that determine the shortage and outdate rate. In this paper, we develop an efficient decision rule for blood inventory management in a hospital blood bank which can support efficient hospital blood inventory management using simulation. The primary use of the efficient decision rule will be to establish minimum cost function which consists of inventory levels, period in inventory, outdate and shortage rate for whole blood and various component inventories for a hospital blood bank or a transfusion service. If the administrator compute the mean daily demand for each blood type, the mean daily supply for each blood type, the length of the crossmatch release period and the average transfusion to crossmatch ratio, then it is possible to apply the efficient decision rule to compute the optimal inventory level, inventory period, outdate and shortage rate. This rule can also be used as a decision support system that allows the blood bank administrator to do sensitivity analysis related to controllable blood inventory parameters.

  • PDF

Development of an Efficient Decision Rule for Blood Inventory Management (효율적인 혈액 재고 관리를 위한 결정룰의 도출)

  • 서정대
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.1
    • /
    • pp.13-27
    • /
    • 1996
  • The management of blood inventory is very important within the medical care system. The efficient management of blood supplies and demands for transfusion is of great economic and social importance to both hospitals and patients. Fro any blood type, there is a complex interaction among the optimal inventory level, daily demand level , daily supply level, transfusion to crossmatch ratio, crossmatch release period, issuing policy and the age of arriving units that determine the shortage and outdate rate. In this paper, we develop an efficient decision rule for blood inventory management in a hospital blood bank which can support efficient hospital blood inventory management using simulation, The primary use of the efficient decision rule will be to establish minimum cost function which consists of inventory levels , period in inventory, outdate and shortage rate for whole blood and various component inventories for a hospital blood bank or a transfusion service, If the adminstrator compute the mean daily demand for each blood type, the mean daily supply for each blood type, the length of the crossmatch release period and the average transfusion to crossmatch ratio , then it is possible to apply the efficient decision rule to compute the optimal inventory level, inventory period , outdate and shortage rate. This rule can also be used as a decision support system that allows the blood bank adminstrator to do sensitivity analysis related to controlled blood inventory parameters.

  • PDF

Aggregate Planning Using Least Cost First Assignment Algorithm of Transportation Problem (운송 문제의 최소비용 우선 배정 알고리즘을 적용한 총괄계획)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.181-188
    • /
    • 2021
  • In preparing a aggregate production plan(APP), the transportation method generally uses a linear planning(LP) software package for TSM(transportation simplex method), which seeks initial solutions with either NCM, LCM, or VAM specialized in transportation issues and optimizes them with either SSM or MODI. On the other hand, this paper proposes a transportation method that easily, quickly, and accurately prepares a APP without software package assistance. This algorithm proposed simply assigned to least cost-first, and minimized the inventory periods. Applying the proposed algorithm to 6-benchmarking data, this algorithm can be obtained better optimal solution than VAM or LP for 4 data, and we obtain the same results for the remained 2 data.

Estimation of Monthly Dissolved Inorganic Carbon Inventory in the Southeastern Yellow Sea (황해 남동부 해역의 월별 용존무기탄소 재고 추정)

  • KIM, SO-YUN;LEE, TONGSUP
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.4
    • /
    • pp.194-210
    • /
    • 2022
  • The monthly inventory of dissolved inorganic carbon (CT) and its fluxes were simulated using a box-model for the southeastern Yellow Sea, bordering the northern East China Sea. The monthly CT data was constructed by combining the observed data representing four seasons with the data adopted from the recent publications. A 2-box-model of the surface and deep layers was used, assuming that the annual CT inventory was at the steady state and its fluctuations due to the advection in the surface box were negligible. Results of the simulation point out that the monthly CT inventory variation between the surface and deep box was driven primarily by the mixing flux due to the variation of the mixed layer depth, on the scale of -40~35 mol C m-2 month-1. The air to sea CO2 flux was about 2 mol C m-2 yr-1 and was lower than 1/100 of the mixing flux. The biological pump flux estimated magnitude, in the range of 4-5 mol C m-2 yr-1, is about half the in situ measurement value reported. The CT inventory of the water column was maximum in April, when mixing by cooling ceases, and decreases slightly throughout the stratified period. Therefore, the total CT inventory is larger in the stratified period than that of the mixing period. In order to maintain a steady state, 18 mol C m-2 yr-1 (= 216 g C m-2 yr-1), the difference between the maximum and minimum monthly CT inventory, should be transported out to the East China Sea. Extrapolating this flux over the entire southern Yellow Sea boundary yields 4 × 109 g C yr-1. Conceptually this flux is equivalent to the proposed continental shelf pump. Since this flux must go through the vast shelf area of the East China Sea before it joins the open Pacific waters the actual contribution as a continental shelf pump would be significantly lower than reported value. Although errors accompanied the simple box model simulation imposed by the paucity of data and assumptions are considerably large, nevertheless it was possible to constrain the relative contribution among the major fluxes and their range that caused the CT inventory variations, and was able to suggest recommendations for the future studies.

Developing a dynamic programming model for aircraft-engine maintenance scheduling (항공기 엔진 정비 일정 수립을 위한 동적 계획 모델 개발)

  • 주성종;신상헌
    • Korean Management Science Review
    • /
    • v.13 no.3
    • /
    • pp.163-172
    • /
    • 1996
  • According to flying hours, aircraft engines require regular overhaul for preventive maintenance. Because of hostile defense environment of Republic of Korea, the aircraft of republic of Korea Air Force(ROKAF) have been operated at the maximum level of availability and have similar overhaul schedule in several months. The concentration of overhaul schedule in a short period demands additional spare engines far exceeding the spare engines for corrective maintenance. If ROKAF decides to purchase extra engines for the preventive maintenance, the extra engines will be used only for the preventive maintenance and will be excess inventory for the most of aircraft life ccle. Also, the procurement of extra engines is significant investment for ROKAF. To help ROKAF schedule the preventive maintenance without significant spending, this study develops a dynamic programming model that is solvable using an integer programming algorithm. The model provides the number of engines that should be overhauled for a month for multiple periods under given constraints. ROKAF actually used this model to solve a T-59 engine overhaul problem and saved about three billion won at one time. ROKAF plans to use this model continuously for T-59 and other weapon systems. Thus, saving for long term will be significant to ROKAF. Finally, with minor modification, this model can be applied to deciding the minimum number of spare engines for preventive maintenance.

  • PDF

Joint Replenishment Problem for Single Buyer and Single Supplier System Having the Stochastic Demands (확률적 수요를 갖는 단일구매자와 단일공급자 시스템의 다품목 통합발주문제)

  • Jeong, Won-Chan;Kim, Jong-Soo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.36 no.3
    • /
    • pp.91-105
    • /
    • 2011
  • In this paper, we analyze a logistic system involving a supplier who produces and delivers multiple types of items and a buyer who receives and sells the products to end customers. The buyer controls the inventory level by replenishing each product item up to a given order-up-to-level to cope with stochastic demand of end customers. In response to the buyer's order, the supplier produces or outsources the ordered item and delivers them at the start of each period. For the system described above, a mathematical model for a single type of item was developed from the buyer's perspective. Based on the model, an efficient method to find the cycle length and safety factor which correspond to a local minimum solution is proposed. This single product model was extended to cover a multiple item situation. From the model, algorithms to decide the base cycle length and order interval of each item were proposed. The results of the computational experiment show that the algorithms were able to determine the global optimum solution for all tested cases within a reasonable amount of time.

Spatial Analysis of Carbon Storage in Satellite Radar Imagery Utilizing Sentinel-1: A Case Study of the Ungok Wetlands (위성 레이더 영상 중 Sentinel-1을 활용한 탄소 흡수원 공간분석 - 운곡습지를 대상으로 -)

  • Ha-Eun Yu;Young-Il Cho;Shin-Woo Lee;Moung-Jin Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1731-1745
    • /
    • 2023
  • Within the framework of the post-2020 climate regime, the Paris Agreement's emphasis on Nationally Determined Contributions and Biennial Transparency Reporting is paramount in addressing its long-term temperature goal. A salient issue is the treatment of wetland ecosystems within the context of Land Use, Land-Use Change, and Forestry, as defined by the Intergovernmental Panel on Climate Change. In the 2019 National Inventory Report, wetlands were recategorized as emission sources due to their designation as inundated areas. This study employs C-band radar imagery to discriminate between inundated and non-inundated regions of wetlands, enabling the quantification of their spatial dynamics. The research capitalizes on 24-period Sentinel-1 satellite data to cover both the inundation and desiccation phases while centering its attention on Ungok Wetland, a Ramsar-designated inland wetland conservation area in Korea. The inundated area is quantitatively assessed through the integration of multi-temporal Sentinel-1 Single-Look Complex (SLC) data, aerial orthophotography, and inland wetland spatial information. Furthermore, the study scrutinizes fluctuations in the maximum and minimum inundated areas, with substantial changes corroborated via drone aerial reconnaissance. The outcomes of this investigation hold the potential to make substantive contributions to the refinement of national greenhouse gas absorption and emission factors, thereby informing the development of comprehensive greenhouse gas inventories. These efforts align directly with the overarching objectives of the Paris Agreement.