• Title/Summary/Keyword: Minimum damage

Search Result 388, Processing Time 0.024 seconds

Residual Longitudinal Strengths of Asymmetrically Damaged Ships (비대칭 손상 선박의 잔류 종강도 평가)

  • Choung, Joon-Mo;Lee, Min-Seong;Jeon, Sang-Ik;Nam, Ji-Myung;Ha, Tae-Bum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.246-253
    • /
    • 2011
  • This paper presents estimation of deterministic damage extents and locations due to collision and grounding which are defined by ABS guideline and DNV ship rules. It is noted that the overall extents of damages from DNV are larger than those from ABS. Nonlinear FEAs are carried out to predict residual longitudinal strength of hull girder with asymmetric severe damages. The accuracy of the applied FEA procedure is proved by comparing FEA result with test result of a 1/3-scaled frigate. The investigated vessels are a VLCC and a large-sized bulker for which evenly distributed heeling angles from $0^{\circ}$(sagging) to $180^{\circ}$(hogging) by $30^{\circ}$ due to damage-induced flooding are taken into account. The reduction ratios of the ultimate residual strength for the damaged cases to those for the intact sagging case are shown. It is proved that the grounding damage case under DNV assumption reveals most critical the residual strength. The design formulas are presented to assure minimum residual ultimate moment after damage.

A Study on Typhoon-Disasers in the Korean Peninsula (한반도의 태풍피해에 관한 연구)

  • 유희정
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.25 no.4
    • /
    • pp.61-68
    • /
    • 1983
  • In order to study the disaster of typhoons which hit the Korean peninsula a period of 22 years from 1959 through 1980 was covered to collect necessary data with respect to attack of typhoons and their damage. Centering around the Korean peninsula, typhoons which attacked between 1959 and 1980 were grouped according to their treking routes and damage for detailed analyses. The results are summarized as follows: 1. The average annual damage of typhoons in the Korean peninsula was found to be 1.27 from June to September. The monthly distributions were found to be 53.6% in August, 28.6% in September and 14.2% in July. 2. About an half (56.4%) of the typhoons which hit the Korean peninsula passed through the western coast and 27.3% through the southern and 14.6% through the eastern. Typhoons of the we8tern coast were divided by their treking routes as 25.5% in CWE type (Jul., Aug., Sep.), 14.6% in WE type (Jul., Aug.), 16.3% in W type (Jul.). 3. The minimum SLP averaged 976.6mb and ordere:l by the treking routes as E$_1$$_1$ and CWE types are higher 20mb than S, E or WE types. 4. The Korean peninsula was damaged by all number of the typhoons in WE or S type, by a third at number of its in E or WE and WI type. 5. The annual probabilities of typhoon-disasters were 0.773 for once or more, 0. 409 for twice or more, and 0.091 for three times or more. Hearvy damage experienced in the Korean peninsula are found to have an annual. 6. Amount of the damage by the treking routes in ordered S>WE>CWE>E>W$_1$, and heavy storms experienced in the Xorean peninsula are found to have accompanied the WE and S types during the months of August and September. 7. The average annual damages were found to be 110 at the death-tall, 45, 000 at the sufferers and 10.5 billion at the property damage. 8. Seventy-sex percent of the all damage in the Korean peninsula distributed on the district from the 36th Parallel south and included Chie Ju island.

  • PDF

Effects of Long-Term Harbor Shutdown and Temporal Operational Stoppage upon Optimal Design of Vertical Breakwater Caisson (장기간의 항만 폐쇄와 일시적 운영 중단이 직립 방파제 케이슨의 최적 설계에 미치는 영향)

  • Suh, Kyung-Duck;Kim, Deok-Lae;Kim, Kyung-Suk
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.2
    • /
    • pp.113-127
    • /
    • 2007
  • In this study, a model to calculate the expected total construction cost is developed that simultaneously considers the rehabilitation cost related to the sliding of the caisson, the economic damage cost due to harbor shutdown in the event of excessive caisson sliding, and the economic damage cost due to temporal operational stoppage by excessive wave overtopping. A discount rate is used to convert the damage costs occurred at different times to the present value. The optimal cross-section of a caisson is defined as the cross-section that requires a minimum expected total construction cost within the allowable limit for the expected sliding distance of the caisson during the lifetime of the breakwater. Two values are used for the allowable limit: 0.3 and 0.1 m. It was found that the economic damage cost due to harbor shutdown by excessive caisson sliding is more critical than the rehabilitation cost of the caisson or the economic damage cost by excessive wave overtopping in the decision of the optimal cross-section. In addition, the optimal cross-section of the caisson was shown to be determined by the allowable limit for the expected sliding distance rather than the minimum expected total construction cost as a larger value is used for the threshold sliding distance of the caisson for harbor shutdown.

Estimation of Snow Damages using Multiple Regression Model - The Case of Gangwon Province - (대설피해액 추정을 위한 다중회귀 모형의 적용성 평가 - 강원도 지역을 중심으로 -)

  • Kwon, Soon Ho;Chung, Gunhui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.61-72
    • /
    • 2017
  • Due to the climate change, damages of human life and property caused by natural disaster have recently been increasing consistently. In South Korea, total damage by natural disasters over 20 years from 1994 to 2013 is about 1.0 million dollars. The 13% of total damage caused by heavy snow. This is smaller amount than the damage by heavy rainfall or typhoon, but still could cause severe damage in the society. In this study, the snow damage in Gangwon region was estimated using climate variables (daily maximum snow depth, relative humidity, minimum temperature) and scoio-economic variables (Farm population density, GRDP). Multiple regression analysis with enter method was applied to estimate snow damage. As the results, adjusted R-square is above 0.7 in some sub-regions and shows the good applicability although the extreme values are not predicted well. The developed model might be applied for the prompt disaster response.

A hybrid self-adaptive Firefly-Nelder-Mead algorithm for structural damage detection

  • Pan, Chu-Dong;Yu, Ling;Chen, Ze-Peng;Luo, Wen-Feng;Liu, Huan-Lin
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.957-980
    • /
    • 2016
  • Structural damage detection (SDD) is a challenging task in the field of structural health monitoring (SHM). As an exploring attempt to the SDD problem, a hybrid self-adaptive Firefly-Nelder-Mead (SA-FNM) algorithm is proposed for the SDD problem in this study. First of all, the basic principle of firefly algorithm (FA) is introduced. The Nelder-Mead (NM) algorithm is incorporated into FA for improving the local searching ability. A new strategy for exchanging the information in the firefly group is introduced into the SA-FNM for reducing the computation cost. A random walk strategy for the best firefly and a self-adaptive control strategy of three key parameters, such as light absorption, randomization parameter and critical distance, are proposed for preferably balancing the exploitation and exploration ability of the SA-FNM. The computing performance of the SA-FNM is evaluated and compared with the basic FA by three benchmark functions. Secondly, the SDD problem is mathematically converted into a constrained optimization problem, which is then hopefully solved by the SA-FNM algorithm. A multi-step method is proposed for finding the minimum fitness with a big probability. In order to assess the accuracy and the feasibility of the proposed method, a two-storey rigid frame structure without considering the finite element model (FEM) error and a steel beam with considering the model error are taken examples for numerical simulations. Finally, a series of experimental studies on damage detection of a steel beam with four damage patterns are performed in laboratory. The illustrated results show that the proposed method can accurately identify the structural damage. Some valuable conclusions are made and related issues are discussed as well.

Buckling capacity of uniformly corroded steel members in terms of exposure time

  • Rahgozar, Reza;Sharifi, Yasser;Malekinejad, Mohsen
    • Steel and Composite Structures
    • /
    • v.10 no.6
    • /
    • pp.475-487
    • /
    • 2010
  • Most of steel structures in various industries are subjected to corrosion due to environmental exposure. Corrosion damage is a serious problem for these structures which may reduce their carrying capacity. These aging structures require maintenance and in many cases, replacement. The goal of this research is to consider the effects of corrosion by developing a model that estimates corrosion loss as a function of exposure time. The model is formulated based on average measured thickness data collected from three severely corroded I-beams (nearly 30 years old). Since corrosion is a time-dependent parameter. Analyses were performed to calculate the lateral buckling capacity of steel beam in terms of exposure time. Minimum curves have been developed for assessment of the remaining lateral buckling capacity of ordinary I-beams based on the loss of thicknesses in terms of exposure time. These minimum curves can be used by practicing engineers for better estimates on the service life of corrosion damaged steel beams.

Development of Experimental Setup for Impact Punching in Brittle Materials and Analysis of Punching Mechanism (취성재료의 펀칭가공을 위한 충격 장치 개발 및 펀칭기구 해석)

  • Sin, Hyeong-Seop;Kim, Jin-Han;O, Sang-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.629-636
    • /
    • 2001
  • In order to investigate the possibility of impact punching in brittle materials, an experimental setup was developed. In the setup, a long bar as a punch was used to apply the impact load to the specimen plate and measure the applied impact force during the impact punching process. Impact punching tests with various shape of punches were performed in soda-lime glass and silicon wafer under a different level of contact pressure. The damage appearance after the impact punching was examined according to the applied contact pressure. The minimum contact pressure required for a complete punching in glass specimens without development of radial cracks around the punched hole was sought at each condition. The minimum contact pressure increased with increasing the thickness of specimens and decreasing the end radius of punches. The profile of impact forces was measured during the impact punching experiment, and it could explain well the behavior of the punching process in brittle material plates. The measured impact force increased with increasing the contact pressure applied to the plates.

Study on Structural Safety Analysis of EGR Valve (EGR Valve의 구조 안전성 해석에 관한 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.528-534
    • /
    • 2011
  • This study analyzes thermal stress and durability fatigue on the modelling of EGR valve. In case of 10% opening at its inlet, the minimum temperature gets cool as 3 times as inlet temperature. The maximum equivalent stress becomes lowest as the value of $2.6274{\times}109$ Pa and fatigue life becomes highest as 23.657 Cycle. But the minimum temperature gets cool as 2.2 times as inlet temperature in case of 50% opening at its inlet. The equivalent stress becomes higher and fatigue life becomes lower than in case of 10% opening. In case of 100% opening at its inlet, the minimum temperature gets cool as 0.2 times as inlet temperature. The equivalent stress becomes lower and fatigue life becomes higher than in case of 50% opening. Maximum equivalent stress and total deformation are shown at the closing of EGR valve by the pressure of inflow gas. The structural analysis result of this study can be effectively utilized with the design of EGR valve by investigating prevention and durability against its damage.

A Study on the Basic Solution for Sustainable Buildings - Focused on the Interior Materials of Eco-Buildings in Minnesota, USA (지속가능한 건축디자인을 위한 기초방안에 관한 고찰 - 미국 미네소타 주 친환경사례의 실내 건축자재를 중심으로 -)

  • Chun, Jin-Hie
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.2 s.55
    • /
    • pp.174-182
    • /
    • 2006
  • This study is focused on interior materials and wastes among other diverse environmental strategies for sustainable construction. The case study was carried out by using MSDG, mainly utilized in evaluating performance of sustainable constructions in Minnesota, the US, as an evaluation tool, in order to analyze American practices. In this study, a field inspection was conducted to 6 Minnesota cases, following a preliminary examination through literature study and portal site search, and then, constructive reports, interviews with people in charge, and empirical data including photos were added to the basic data provided by MSDG and MOEA As a result, it turned out *that sustainable materials were mainly used even in newly constructed buildings and wastes were properly managed in an environment-friendly, economical, and ethical manner, *that life cycle assessment showed reduction in some constructive costs even when the basic costs were high, *that some recycled finish materials were widely used in diverse areas, *that minimum consumption of raw materials, minimum environmental damage by materials, minimum effect of materials on IAQ were found in the examined cases, and *that many attempts were made to minimize resource consumption and constructive wastes from diverse perspectives.

Static and Dynamic Analysis of Automotive Steering System (자동차 조향 장치의 정적 및 동적 응력해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.36-40
    • /
    • 2008
  • This study is analyzed by the simulation of automotive steering system. The maximum equivalent stress of $2.2418{\times}109Pa$ and the maximum total displacement of 0.014929m are shown at the universal joint and its lower part respectively. As the minimum cycle of 34.047 is shown at the universal joint in case of fatigue analysis, it is possible to have greatest damage at this part. In case of natural frequency analysis at vibration, its frequency of 47 to 59Hz is occurred generally. The maximum total displacement of 0.5m is shown at handle on the natural frequency of 57 to 58Hz. And the displacement over 2m is shown at the lower part of universal joint on the natural frequency of 58 to 59Hz. As the basis of the simulation analysis of steering system, passenger's comfort of car body can be improved in the design of practical part and the design effect necessary to safe driving can be promoted.

  • PDF