• Title/Summary/Keyword: Minimum damage

Search Result 392, Processing Time 0.028 seconds

Change Detection of Building Demolition Area Using UAV (UAV를 활용한 건물철거 지역 변화탐지)

  • Shin, Dongyoon;Kim, Taeheon;Han, Youkyung;Kim, Seongsam;Park, Jesung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.819-829
    • /
    • 2019
  • In the disaster of collapse, an immediate response is needed to prevent the damage from worsening, and damage area calculation, response and recovery plan should be established. This requires accurate detection of the damage affected area. This study performed the detection of the damaged area by using UAV which can respond quickly and in real-time to detect the collapse accident. The study area was selected as B-05 housing redevelopment area in Jung-gu, Ulsan, where the demolition of houses and apartments in progress as the redevelopment project began. This area resembles a collapsed state of the building, which clear changes before and after the demolition. UAV images were acquired on May 17 and July 9, 2019, respectively. The changing area was considered as the damaged area before and after the collapse of the building, and the changing area was detected using CVA (Change Vector Analysis) the Representative Change Detection Technique, and SLIC (Simple Linear Iterative Clustering) based superpixel algorithm. In order to accurately perform the detection of the damaged area, the uninterested area (vegetation) was firstly removed using ExG (Excess Green), Among the objects that were detected by change, objects that had been falsely detected by area were finally removed by calculating the minimum area. As a result, the accuracy of the detection of damaged areas was 95.39%. In the future, it is expected to be used for various data such as response and recovery measures for collapse accidents and damage calculation.

Data Acquisition of Time Series from Stationary Ergodic Random Process Spectrums (정상 에르고드성을 가지는 확률과정 스펙트럼에 대한 합리적 시계열 데이터 확보)

  • Park, Jun-Bum;Kim, Kyung-Su;Choung, Joon-Mo;Kim, Jae-Woo;Yoo, Chang-Hyuk;Ha, Yeong-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.120-126
    • /
    • 2011
  • The fatigue damages in structural details of offshore plants can be accumulated due to various environmental loadings such as swell, wave, wind and current. It is known that load histories acting on mooring and riser systems show stationary and ergodic bimodal wide-banded process. This paper provides refined approach to obtain time signals representing stress range histories from wide-banded bimodal spectrum which consists of ideally narrow-banded and fully separated two spectrums. Variations of the probabilistic characteristics for time signals according to frequency and sampling time increments are compared with the reference data to be the probabilistic characteristics such as zero-crossing period, peak period, and irregularity factor obtained from an assumed ideal spectrum. It is proved that the sampling time increment more affects on the probabilistic characteristics than frequency increment. The fatigue damages according to the frequency and sampling time increments are also compared with the ones with minimum increment condition which are thought to be exact fatigue damage. It is concluded that the maximum sampling time increment to obtain reliable time signals should be determined that ratio of applied maximum sampling time increment and minimum period is less than approximately 0.08.

A new geomechanical approach to investigate the role of in-situ stresses and pore pressure on hydraulic fracture pressure profile in vertical and horizontal oil wells

  • Saberhosseini, Seyed Erfan;Keshavarzi, Reza;Ahangari, Kaveh
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.233-246
    • /
    • 2014
  • Estimation of fracture initiation pressure is one of the most difficult technical challenges in hydraulic fracturing treatment of vertical or horizontal oil wells. In this study, the influence of in-situ stresses and pore pressure values on fracture initiation pressure and its profile in vertical and horizontal oil wells in a normal stress regime have been investigated. Cohesive elements with traction-separation law (XFEM-based cohesive law) are used for simulating the fracturing process in a fluid-solid coupling finite element model. The maximum nominal stress criterion is selected for initiation of damage in the cohesive elements. The stress intensity factors are verified for both XFEM-based cohesive law and analytical solution to show the validation of the cohesive law in fracture modeling where the compared results are in a very good agreement with less than 1% error. The results showed that, generally by increasing the difference between the maximum and minimum horizontal stress, the fracture pressure and its profile has been strongly changed in the vertical wells. Also, it's been clearly observed that in a horizontal well drilled in the direction of minimum horizontal stress, the values of fracture pressure have been significantly affected by the difference between overburden pressure and maximum horizontal stress. Additionally, increasing pore pressure from under-pressure regime to over-pressure state has made a considerable fall on fracture pressure in both vertical and horizontal oil wells.

Characteristics of Annual Rings of Pinus thunbergii Grown in the Air-polluted Area by Soft X-ray Analysis (Soft X-ray분석(分析)에 의한 대기오염지역(大氣汚染地域)에서 자란 해송(Pinus thunbergii)의 연륜(年輪)의 특징(特徵))

  • Kim, Jong Kab;Kim, Jai Saing
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.4
    • /
    • pp.351-359
    • /
    • 1991
  • Annual ring characteristics of pinus thunbergii grown in several air-polluted areas were investigated by soft X-ray densitometry. Ring width, maximum density and relative difference between maximum and minimum density(abbreviated to DD) were generally decreased after the beginning of operation of the factories at the vicinity of the pollution sources. Especially at the nearest areas of the industrial complex, those were distinctly decreased, and the changes, either increases or decreases, in percentage of latewood and minimum density could not be explained by the air pollution dosages. Ring width, maximum density and DD were being more apparently decreased after 5 years than those for 5 years after the beginning of operation, and also the rate of decrease was increased from after 5 years after the beginning of operation, and the rate of decrease of ring width was the highest of all. It was inferred that ring width, maximum density and DD of Pinus thunbergii could be used as indicators to detect the growth damage by air pollution.

  • PDF

Chitosan Based Silver Nanocomposites (CAgNCs) Display Antibacterial Effects against Vibrio ichthyoenteri

  • Beom, Seo Seung;Shin, Sang Yeop;Dananjaya, S.H.S.;De Silva, A.B.K.H.;Nikapitiya, Chamilani;Cho, Jongki;Park, Gun-Hoo;Oh, Chulhong;Kang, Do-Hyung;De Zoysa, Mahanama
    • Journal of Veterinary Clinics
    • /
    • v.34 no.4
    • /
    • pp.261-267
    • /
    • 2017
  • The aim of this study was to investigate the antibacterial properties of chitosan silver nanocomposites (CAgNCs) using pathogenic Vibrio ichthyoenteri as a bacterial model. Results of agar disc diffusion and turbidimetric assays showed that CAgNCs could inhibit the growth of V. ichthyoenteri in concentration dependent manner. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CAgNCs were 75 and $125{\mu}g/mL$, respectively. Furthermore, CAgNCs treatment induced the reactive oxygen species (ROS) level in V. ichthyoenteri cells in concentration and time dependent manner, suggesting that it generates oxidative stress, leading to bacterial cell death. The field emission scanning electron microscope (FE-SEM) images of CAgNCs treated V. ichthyoenteri exhibited strong cell membrane damage than un-treated control bacteria. MTT assay results showed the highest cell viability (22%) at $75{\mu}g/mL$ of CAgNCs treated bacteria samples. The results from this study suggest that CAgNCs is a potential antibacterial agent to control fish pathogenic bacteria.

Improved antimicrobial effect of ginseng extract by heat transformation

  • Xue, Peng;Yao, Yang;Yang, Xiu-shi;Feng, Jia;Ren, Gui-xing
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.180-187
    • /
    • 2017
  • Background: The incidence of halitosis has a prevalence of 22-50% throughout the world and is generally caused by anaerobic oral microorganisms, such as Fusobacterium nucleatum, Clostridium perfringens, and Porphyromonas gingivalis. Previous investigations on the structure-activity relationships of ginsenosides have led to contrasting results. Particularly, the antibacterial activity of less polar ginsenosides against halitosis-related bacteria has not been reported. Methods: Crude saponins extracted from the Panax quinquefolius leaf-stem (AGS) were treated at $130^{\circ}C$ for 3 h to obtain heat-transformed saponins (HTS). Five ginsenoside-enriched fractions (HTS-1, HTS-2, HTS-3, HTS-4, and HTS-5) and less polar ginsenosides were separated by HP-20 resin absorption and HPLC, and the antimicrobial activity and mechanism were investigated. Results: HPLC with diode-array detection analysis revealed that heat treatment induced an extensive conversion of polar ginsenosides (-Rg1/Re, -Rc, -Rb2, and -Rd) to less polar compounds (-Rg2, -Rg3, -Rg6, -F4, -Rg5, and -Rk1). The antimicrobial assays showed that HTS, HTS-3, and HTS-4 were effective at inhibiting the growth of F. nucleatum, C. perfringens, and P. gingivalis. Ginsenosides-Rg5 showed the best antimicrobial activity against the three bacteria, with the lowest values of minimum inhibitory concentration and minimum bactericidal concentration. One major reason for this result is that less polar ginsenosides can more easily damage membrane integrity. Conclusion: The results indicated that the less polar ginsenoside-enriched fraction from heat transformation can be used as an antibacterial agent to control halitosis.

Water Region Segmentation Method using Graph Algorithm (그래프 알고리즘을 이용한 강물 영역 분할 방법)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.787-794
    • /
    • 2018
  • The various natural disasters such as floods and localized heavy rains are increasing due to the global warming. If a natural disaster can be detected and analyzed in advance and more effectively, it can prevent enormous damage of natural disasters. Recent development in visual sensor technologies has encouraged various studies on monitoring environments including rivers. In this paper, we propose a method to detect water regions from river images which can be exploited for river surveillance systems using video sensor networks. In the proposed method, we first segment a river image finely using the minimum spanning tree algorithm. Then, the seed regions for the river region and the background region are set by using the preliminary information, and each seed region is expanded by merging similar regions to segment the water region from the image. Experimental results show that the proposed method separates the water region from a river image easier and accurately.

Management to Prepare Fast Green Suitable for International Golf Tournament in Korea - A Case Study of the Lakeside Country Club - (한국에서 국제 골프 토너먼트 규격에 맞는 빠른 그린 관리 방법 - 레이크사이드 컨트리 클럽을 사례로 -)

  • 장유비;김진관;박장혁;심경구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.1
    • /
    • pp.66-77
    • /
    • 2003
  • The purpose of this study is to propose a standard putting green management program to prepare fast green suitable for international golf tournaments, and to conform whether the reported green speed model can be applied to the real field situations. The west course of Lakeside Country Club was selected for the case study. This study was initiated on August 1st, 2001 and continued through October 4th, 2001. The results are summarized as follows: 1. Following the long-term schedule, 'penncross' creeping bentgrass turf was mowed at 5.0mm(37days), 4.5mm(8days), 4.0mm(4days), 3.5mm(2days), 3.2mm(2days), 3.0mm(2days), 2.8mm(2days) and the mowing direction was changed daily. Variation of mowing height was reduced to a minimum range. Core aerification with deep tines was applied 19 days prior to the first practice round. Dry sand maintenance was top-dressed 2 times at 1.5mm/$m^2$ on the 17th day and 1.0mm/$m^2$ on the 10th day. Minimum irrigation was applied to keep the turf alive. During the tournament preparation week, dew on the putting greens was removed by using a sponge roller. Following the dew removal, the greens were cut once each morning at a height of 2.8mm. The mower used was the 21 inch working behind mower equipped with a tournament bedknife and 11 reel blades. Following the mowing, the peens were rolled with a light-weight roller in one direction in the morning. Rolling was used as a finishing technique to ensure that the surface was as smooth as possible, and to provide true ball roll and maximum green speed. In conclusion these management practices satisfied the daily green stimpmeter readings required for USGA championship play. 2. During the period of tournament preparation, no damage was observed on the green, but scalping in green edge appeared in about 0.39% of the total area of 18 greens in the west course.

Feasibility Study on the Utilization of EMAT Technology for In-line Inspection of Gas Pipeline

  • Cho, Sung-Ho;Yoo, Hui-Ryong;Rho, Yong-Woo;Kim, Hak-Joon;Kim, Dae-Kwang;Song, Sung-Jin;Park, Gwan-Soo
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2011
  • If gas is leaking out of gas pipelines, it could cause a huge explosion. Accordingly, it is important to ensure the integrity of gas pipelines. Traditionally, over the years, gas-operating companies have used the ILI system, which is based on axial magnetic flux leakage (MFL), to inspect the gas pipelines. Relatively, there is a low probability of detection (POD) for the axial defects with the axial MFL-based ILI. To prevent the buried pipeline from corrosion, it requires a protective coating. In addition to the potential damage to the coating by environmental factors and external forces, there could be defects on the damaged coating area. Thus, it is essential that nondestructive evaluation methods for detecting axial defects (axial cracks, axial groove) and damaged coating be developed. In this study, an electromagnetic acoustic transducer (EMAT) sensor was designed and fabricated for detecting axial defects and coating disbondment. In order to validate the performances of the developed EMAT sensor, experiments were performed with specimens from axial cracks, axial grooves, and coating disbondment. The experimental results showed that the developed EMAT sensor could detect not only the axial cracks (minimum 5% depth of wall thickness) and axial grooves (minimum 10% depth of wall thickness), but also the coating disbondment.

A comparative study of the performance of machine learning algorithms to detect malicious traffic in IoT networks (IoT 네트워크에서 악성 트래픽을 탐지하기 위한 머신러닝 알고리즘의 성능 비교연구)

  • Hyun, Mi-Jin
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.463-468
    • /
    • 2021
  • Although the IoT is showing explosive growth due to the development of technology and the spread of IoT devices and activation of services, serious security risks and financial damage are occurring due to the activities of various botnets. Therefore, it is important to accurately and quickly detect the activities of these botnets. As security in the IoT environment has characteristics that require operation with minimum processing performance and memory, in this paper, the minimum characteristics for detection are selected, and KNN (K-Nearest Neighbor), Naïve Bayes, Decision Tree, Random A comparative study was conducted on the performance of machine learning algorithms such as Forest to detect botnet activity. Experimental results using the Bot-IoT dataset showed that KNN can detect DDoS, DoS, and Reconnaissance attacks most effectively and efficiently among the applied machine learning algorithms.