• Title/Summary/Keyword: Minimum Weight Edge

Search Result 28, Processing Time 0.017 seconds

ON THE MINIMUM WEIGHT OF A 3-CONNECTED 1-PLANAR GRAPH

  • Lu, Zai Ping;Song, Ning
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.763-787
    • /
    • 2017
  • A graph is called 1-planar if it can be drawn in the Euclidean plane ${\mathbb{R}}^2$ such that each edge is crossed by at most one other edge. The weight of an edge is the sum of degrees of two ends. It is known that every planar graph of minimum degree ${\delta}{\geq}3$ has an edge with weight at most 13. In the present paper, we show the existence of edges with weight at most 25 in 3-connected 1-planar graphs.

An Algorithm for Minimum Feedback Edge Set Problem (최소 되먹임 간선 집합 문제 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.3
    • /
    • pp.107-113
    • /
    • 2015
  • This paper presents a polynomial time algorithm to the minimum cardinality feedback edge set and minimum weight feedback edge set problems. The algorithm makes use of the property wherein the sum of the minimum spanning tree edge set and the minimum feedback edge set equals a given graph's edge set. In other words, the minimum feedback edge set is inherently a complementary set of the former. The proposed algorithm, in pursuit of the optimal solution, modifies the minimum spanning tree finding Kruskal's algorithm so as to arrange the weight of edges in a descending order and to assign cycle-deficient edges to the maximum spanning tree edge set MXST and cycle-containing edges to the feedback edge set FES. This algorithm runs with linear time complexity, whose execution time corresponds to the number of edges of the graph. When extensively tested on various undirected graphs both with and without the weighed edge, the proposed algorithm has obtained the optimal solutions with 100% success and accuracy.

Minimum Spanning Tree Algorithm for Deletion of Maximum Weight Edge within a Cycle (한 사이클 내에서 최대 가중치 간선을 제거하기 위한 최소 신장트리 알고리즘)

  • Choi, Myeong-Bok;Han, Tae-Yong;Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.35-42
    • /
    • 2014
  • This paper suggests a method that obtains the minimum spanning tree (MST) far more easily and rapidly than the present ones. The suggested algorithm, firstly, simplifies a graph by means of reducing the number of edges of the graph. To achieve this, it applies a method of eliminating the maximum weight edge if the valency of vertices of the graph is equal to or more than 3. As a result of this step, we can obtain the reduced edge population. Next, it applies a method in which the maximum weight edge is eliminated within the cycle. On applying the suggested population minimizing and maximum weight edge deletion algorithms to 9 various graphs, as many as the number of cycles of the graph is executed and MST is easily obtained. It turns out to lessen 66% of the number of cycles and obtain the MST in at least 2 and at most 8 cycles by only deleting the maximum weight edges.

An Eulerian Cycle Algorithm for Chinese Postman Problem

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.7
    • /
    • pp.47-52
    • /
    • 2016
  • This paper introduces an algorithm to construct an Eulerian cycle for Chinese postman problem. The Eulerian cycle is formed only when all vertices in the graph have an even degree. Among available algorithms to the Eulerian cycle problem, Edmonds-Johnson's stands out as the most efficient of its kind. This algorithm constructs a complete graph composed of shortest path between odd-degree vertices and derives the Eulerian cycle through minimum-weight complete matching method, thus running in $O({\mid}V{\mid}^3)$. On the contrary, the algorithm proposed in this paper selects minimum weight edge from edges incidental to each vertex and derives the minimum spanning tree (MST) so as to finally obtain the shortest-path edge of odd-degree vertices. The algorithm not only runs in simple linear time complexity $O({\mid}V{\mid}log{\mid}V{\mid})$ but also obtains the optimal Eulerian cycle, as the implementation results on 4 different graphs concur.

Efficient Connection of Migration Routes with Their Weights Using EGOSST (EGOSST를 이용한 이동 경로의 가중치를 반영한 효과적 연결)

  • Kim, In-Bum
    • The KIPS Transactions:PartA
    • /
    • v.18A no.5
    • /
    • pp.215-224
    • /
    • 2011
  • In this paper, a mechanism connecting all weighted migration routes with minimum cost with EGOSST is proposed. Weighted migration routes may be converted to weighted input edges considered as not only traces but also traffics or trip frequencies of moving object on communication lines, roads or railroads. Proposed mechanism can be used in more wide and practical area than mechanisms considering only moving object traces. In our experiments, edge number, maximum weight for input edges, and detail level for grid are used as input parameters. The mechanism made connection cost decrease average 1.07% and 0.43% comparing with the method using weight minimum spanning tree and weight steiner minimum tree respectively. When grid detail level is 0.1 and 0.001, while each execution time for a connecting solution increases average 97.02% and 2843.87% comparing with the method using weight minimum spanning tree, connecting cost decreases 0.86% and 1.13% respectively. This shows that by adjusting grid detail level, proposed mechanism might be well applied to the applications where designer must grant priority to reducing connecting cost or shortening execution time as well as that it can provide good solutions of connecting migration routes with weights.

Proposal of Minimum Spanning Tree Algorithm using 2-Edges Connected Grap (2-간선 연결 그래프를 사용한 최소신장트리 알고리즘 제안)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.233-241
    • /
    • 2014
  • This paper suggests a fast minimum spanning tree algorithm which simplify the original graph to 2-edge connected graph, and using the cycling property. Borůvka algorithm firstly gets the partial spanning tree using cycle property for one-edge connected graph that selects the only one minimum weighted edge (e) per vertex (v). Additionally, that selects minimum weighted edge between partial spanning trees using cut property. Kruskal algorithm uses cut property for ascending ordered of all edges. Reverse-delete algorithm uses cycle property for descending ordered of all edges. Borůvka and Kruskal algorithms always perform |e| times for all edges. The proposed algorithm obtains 2-edge connected graph that selects 2 minimum weighted edges for each vertex firstly. Secondly, we use cycle property for 2-edges connected graph, and stop the algorithm until |e|=|v|-1 For actual 10 benchmark data, The proposed algorithm can be get the minimum spanning trees. Also, this algorithm reduces 60% of the trial number than Borůvka, Kruskal and Reverse-delete algorithms.

Use of Tree Traversal Algorithms for Chain Formation in the PEGASIS Data Gathering Protocol for Wireless Sensor Networks

  • Meghanathan, Natarajan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.6
    • /
    • pp.612-627
    • /
    • 2009
  • The high-level contribution of this paper is to illustrate the effectiveness of using graph theory tree traversal algorithms (pre-order, in-order and post-order traversals) to generate the chain of sensor nodes in the classical Power Efficient-Gathering in Sensor Information Systems (PEGASIS) data aggregation protocol for wireless sensor networks. We first construct an undirected minimum-weight spanning tree (ud-MST) on a complete sensor network graph, wherein the weight of each edge is the Euclidean distance between the constituent nodes of the edge. A Breadth-First-Search of the ud-MST, starting with the node located closest to the center of the network, is now conducted to iteratively construct a rooted directed minimum-weight spanning tree (rd-MST). The three tree traversal algorithms are then executed on the rd-MST and the node sequence resulting from each of the traversals is used as the chain of nodes for the PEGASIS protocol. Simulation studies on PEGASIS conducted for both TDMA and CDMA systems illustrate that using the chain of nodes generated from the tree traversal algorithms, the node lifetime can improve as large as by 19%-30% and at the same time, the energy loss per node can be 19%-35% lower than that obtained with the currently used distance-based greedy heuristic.

The Extended k-opt Algorithm for Traveling Salesman Problem (외판원 문제의 확장된 k-opt 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.10
    • /
    • pp.155-165
    • /
    • 2012
  • This paper suggests traveling salesman problem algorithm that have been unsolved problem with NP-Hard. The proposed algorithm is a heuristic with edge-swap method. The classical method finds the initial solution starts with first node and visits to mostly adjacent nodes then decides the traveling path. This paper selects minimum weight edge for each nodes, then perform Min-Min method that start from minimum weight edge among the selected edges and Min-Max method that starts from maximum weight edges among it. Then we decide tie initial solution to minimum path length between Min-Min and Min-Max method. To get the final optimal solution, we apply previous two-opt to initial solution. Also, we suggest extended 3-opt and 4-opt additionally. For the 7 actual experimental data, this algorithm can be get the optimal solutions of state-of-the-art with fast and correct.

Minimum Spanning Tree with Select-and-Delete Algorithm (선택-삭제 최소신장트리 알고리즘)

  • Choi, Myeong-Bok;Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.107-116
    • /
    • 2013
  • This algorithm suggests a method in which a minimum spanning tree can be obtained fast by reducing the number of an algorithm execution. The suggested algorithm performs a select-and-delete process. In the select process, firstly, it performs Borůvka's first stage for all the vertices of a graph. Then it re-performs Borůvka's first stage for specific vertices and reduces the population of the edges. In the delete process, it deletes the maximum weight edge if any cycle occurs between the 3 edges of the edges with the reduced population. After, among the remaining edges, applying the valency concept, it gets rid of maximum weight edges. Finally, it eliminates the maximum weight edges if a cycle happens among the vertices with a big valency. The select-and-delete algorithm was applied to 9 various graphs and was evaluated its applicability. The suggested select process is believed to be the vest way to choose the edges, since it showed that it chose less number of big edges from 6 graphs, and only from 3 graphs, comparing to the number of edges that is to be performed when using MST algorithm. When applied the delete process to Kruskal algorithm, the number of performances by Kruskal was less in 6 graphs, but 1 more in each 3 graph. Also, when using the suggested delete process, 1 graph performed only the 1st stage, 5 graphs till 2nd stage, and the remaining till 3rd stage. Finally, the select-and-delete algorithm showed its least number of performances among the MST algorithms.

Generalized Borůvka's Minimum Spanning Tree Algorithm (일반화된 Borůvka 최소신장트리 알고리즘)

  • Choi, Myeong-Bok;Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.165-173
    • /
    • 2012
  • Given a connected, weighted, and undirected graph, the Minimum Spanning Tree (MST) should have minimum sum of weights, connected all vertices, and without any cycle taking place. Borůvka Algorithm is firstly suggested as an algorithm to evaluate the MST, but it is not widely used rather than Prim and Kruskal algorithms. Borůvka algorithm selects the Minimum Weight Edge (MWE) from each vertex with distinct weights in $1^{st}$ stage, and selects the MWE from each MSF (Minimum Spanning Forest) in $2^{nd}$ stage. But the cycle check and the number of MSF in $1^{st}$ stage and $2^{nd}$ stage are difficult to implication by computer program even if it is easy to verify visually. This paper suggests the generalized Borůvka Algorithm, This algorithm selects all of the same MWEs for each vertex, then checks the cycle and constructs MSF for ascending sorted MWEs. Kruskal method bring into this process. if the number of MSF greats then 1, this algorithm selects MWE from ascending sorted inter-MSF edges. The generalized Borůvka algorithm is verified its application by being applied to the 7 graphs with the many minimum weights or distinct weight edges for any vertex. As a result, the generalized Borůvka algorithm is less required for cycle verification then the Kruskal algorithm. Therefore, the generalized Borůvka algorithm is more fast to obtain MST then Kruskal algorithm.