• Title/Summary/Keyword: Minimum Variance Method

Search Result 190, Processing Time 0.029 seconds

A comparative study of low-complexity MMSE signal detection for massive MIMO systems

  • Zhao, Shufeng;Shen, Bin;Hua, Quan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1504-1526
    • /
    • 2018
  • For uplink multi-user massive MIMO systems, conventional minimum mean square error (MMSE) linear detection method achieves near-optimal performance when the number of antennas at base station is much larger than that of the single-antenna users. However, MMSE detection involves complicated matrix inversion, thus making it cumbersome to be implemented cost-effectively and rapidly. In this paper, we first summarize in detail the state-of-the-art simplified MMSE detection algorithms that circumvent the complicated matrix inversion and hence reduce the computation complexity from ${\mathcal{O}}(K^3)$ to ${\mathcal{O}}(K^2)$ or ${\mathcal{O}}(NK)$ with some certain performance sacrifice. Meanwhile, we divide the simplified algorithms into two categories, namely the matrix inversion approximation and the classical iterative linear equation solving methods, and make comparisons between them in terms of detection performance and computation complexity. In order to further optimize the detection performance of the existing detection algorithms, we propose more proper solutions to set the initial values and relaxation parameters, and present a new way of reconstructing the exact effective noise variance to accelerate the convergence speed. Analysis and simulation results verify that with the help of proper initial values and parameters, the simplified matrix inversion based detection algorithms can achieve detection performance quite close to that of the ideal matrix inversion based MMSE algorithm with only a small number of series expansions or iterations.

A Digital Phase-locked Loop design based on Minimum Variance Finite Impulse Response Filter with Optimal Horizon Size (최적의 측정값 구간의 길이를 갖는 최소 공분산 유한 임펄스 응답 필터 기반 디지털 위상 고정 루프 설계)

  • You, Sung-Hyun;Pae, Dong-Sung;Choi, Hyun-Duck
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.591-598
    • /
    • 2021
  • The digital phase-locked loops(DPLL) is a circuit used for phase synchronization and has been generally used in various fields such as communication and circuit fields. State estimators are used to design digital phase-locked loops, and infinite impulse response state estimators such as the well-known Kalman filter have been used. In general, the performance of the infinite impulse response state estimator-based digital phase-locked loop is excellent, but a sudden performance degradation may occur in unexpected situations such as inaccuracy of initial value, model error, and disturbance. In this paper, we propose a minimum variance finite impulse response filter with optimal horizon for designing a new digital phase-locked loop. A numerical method is introduced to obtain the measured value interval length, which is an important parameter of the proposed finite impulse response filter, and to obtain a gain, the covariance matrix of the error is set as a cost function, and a linear matrix inequality is used to minimize it. In order to verify the superiority and robustness of the proposed digital phase-locked loop, a simulation was performed for comparison and analysis with the existing method in a situation where noise information was inaccurate.

Genetic diversity, relationships and demographic history of the small yellow croaker, Larimichthys polyactis (Pisces: Sciaenidae) from Korea and China inferred from mitochondrial control region sequence data

  • Kim, Jin-Koo;Kim, Yeong-Hye;Kim, Mi-Jung;Park, Jung-Youn
    • Animal cells and systems
    • /
    • v.14 no.1
    • /
    • pp.45-51
    • /
    • 2010
  • Genetic variation was surveyed at the mitochondrial control region (766bp) to test for the presence of genetic stock structure in the small yellow croaker, Larimichthys polyactis from the Yellow and East China Seas. Individuals of the small yellow croaker could not be distinguished on the basis of its location, as demonstrated using the neighbor-joining (NJ) method, unweighted pair-group method, arithmetic average (UPGMA) and the minimum spanning network (MSN). Analysis of molecular variance revealed no significant differences among collections of the small yellow croaker taken from the four locations (two locations each in Korea and China). Neutrality tests and a mismatch distribution analysis indicated that this species has recently expanded. Our findings suggest either that the small yellow croaker has a high migration capability that enables it to overcome the effects of genetic drift, or that this species expanded relatively recently and has not yet had sufficient time to differentiate.

Observed Data Oriented Bispectral Estimation of Stationary Non-Gaussian Random Signals - Automatic Determination of Smoothing Bandwidth of Bispectral Windows

  • Sasaki, K.;Shirakata, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.502-507
    • /
    • 2003
  • Toward the development of practical methods for observed data oriented bispectral estimation, an automatic means for determining the smoothing bandwidth of bispectral windows is proposed, that can also provide an associated optimum bispectral estimate of stationary non-Gaussian signals, systematically only from an observed time series datum of finite length. For the conventional non-parametric bispectral estimation, the MSE (mean squared error) of the normalized estimate is reviewed under a certain mixing condition and sufficient data length, mainly from the viewpoint of the inverse relation between its bias and variance with respect to the smoothing bandwidth. Based on the fundamental relation, a systematic method not only for determining the bandwidth, but also for obtaining the optimum bispectral estimate is presented by newly introducing a MSE evaluation index of the estimate only from an observed time series datum of finite length. The effectiveness and fundamental features of the proposed method are illustrated by the basic results of numerical experiments.

  • PDF

A Novel Covariance Matrix Estimation Method for MVDR Beamforming In Audio-Visual Communication Systems (오디오-비디오 통신 시스템에서 MVDR 빔 형성 기법을 위한 새로운 공분산 행렬 예측 방법)

  • You, Gyeong-Kuk;Yang, Jae-Mo;Lee, Jinkyu;Kang, Hong-Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.326-334
    • /
    • 2014
  • This paper proposes a novel covariance matrix estimation scheme for minimum variance distortionless response (MVDR) beamforming. By accurately tracking direction-of-sound source arrival (DoA) information using audio-visual sensors, the covariance matrix is efficiently estimated by adopting a variable forgetting factor. The variable forgetting factor is determined by considering signal-to-interference ratio (SIR). Experimental results verify that the performance of the proposed method is superior to that of the conventional one in terms of interference/noise reduction and speech distortion.

Reliability Analysis of Differential Settlement Using Stochastic FEM (추계론적 유한요소법을 이용한 지반의 부등침하 신뢰도 해석)

  • 이인모;이형주
    • Geotechnical Engineering
    • /
    • v.4 no.3
    • /
    • pp.19-26
    • /
    • 1988
  • A stochastic numerical model for predictions of differential settlement of foundation Eoils is developed in this Paper. The differential settlement is highly dependent on the spatial variability of elastic modulus of soil. The Kriging method is used to account for the spatial variability of the elastic modulus. This technique provides the best linear unbiased estimator of a parameter and its minimum variance from a limited number of measured data. The stochastic finite element method, employing the first-order second-moment analysis for computations of error Propagation, is used to obtain the means, ariances, and covariances of nodal displacements. Finally, a reliability model of differential settlement is proposed by using the results of the stochastic FEM analysis. It is found that maximum differential settlement occurs when the distance between two foundations is approximately same It with the scale of fluctuation in horizontal direction, and the probability that differential settlement exceeds the allot.able vague might be significant.

  • PDF

Adaptive Beamforming Applied to Bearing Estimation of DIFAR Signal with Highly Directional Noise (높은 방향성 소음환경에서 DIFAR 수신센서 신호의 적응 빔형성에 의한 방위추정)

  • Shin, Kee-Cheol;Kim, Jea-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.8
    • /
    • pp.474-481
    • /
    • 2011
  • Conventional beamforming is ineffective in producing directional information in system with sparse degree of the freedom such as DIFAR (DIrectional Frequency Analysis and Recording) sonobuoy and in the presence of high directional noise. In this paper, Adaptive beamforming techniques are applied to produce directional spectra from a small number of sensors in highly directional noise environment. Conventional method as well as minimum variance and eigenvectors as adaptive method are evaluated via numerical test and real data.

The prediction of the critical factor of safety of homogeneous finite slopes subjected to earthquake forces using neural networks and multiple regressions

  • Erzin, Yusuf;Cetin, T.
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • In this study, artificial neural network (ANN) and multiple regression (MR) models were developed to predict the critical factor of safety ($F_s$) of the homogeneous finite slopes subjected to earthquake forces. To achieve this, the values of $F_s$ in 5184 nos. of homogeneous finite slopes having different slope, soil and earthquake parameters were calculated by using the Simplified Bishop method and the minimum (critical) $F_s$ for each of the case was determined and used in the development of the ANN and MR models. The results obtained from both the models were compared with those obtained from the calculations. It is found that the ANN model exhibits more reliable predictions than the MR model. Moreover, several performance indices such as the determination coefficient, variance account for, mean absolute error, root mean square error, and the scaled percent error were computed. Also, the receiver operating curves were drawn, and the areas under the curves (AUC) were calculated to assess the prediction capacity of the ANN and MR models developed. The performance level attained in the ANN model shows that the ANN model developed can be used for predicting the critical $F_s$ of the homogeneous finite slopes subjected to earthquake forces.

A Design Weighting Polynomial Parameter Tuning of a Self Tuning Controller (자기동조 제어기의 설계 하중다항식 계수 조정)

  • 조원철;김병문
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.87-95
    • /
    • 1998
  • This paper presents the method for the automatic tuning of a design weighting polynomial parameter of a generalized minimum-variance stochastic self tuning controller which adapts to changes in the system parameters with time delays and noises. The self tuning effect is achieved through the recursive least square algorithm at the parameter estimation stage and also through the Robbins-Monro algorithm at the stage of optimizing a design weighting polynomial parameters. The proposed self tuning method is simple and effective compared with other existing self tuning methods. The computer simulation results are presented to illustrate the procedure and to show the performance of the control system.

  • PDF

Performance Analysis of the Anti-Spoofing Array Antenna with Eigenvector Nulling Algorithm

  • Lee, Kihoon;Song, Min Kyu;Lee, Jang Yong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.181-189
    • /
    • 2022
  • The public open signals from Global Navigation Satellite System (GNSS) including Global positioning system (GPS) are used widely by many peoples in the world except for the public regulated restriction signals which are encrypted. Nowadays there are growing concerns about GNSS signal spoofing which can deceive the GNSS receivers by abusing these open services. To counter these spoofing threats, many researches have been studied including array antenna techniques which can detect the direction of arrival by means of Multiple Signal Classification (MUSIC) algorithm. Originally the array antenna techniques were developed to countermeasure the jamming signal in electronic warfare by using the nulling or beamforming algorithm toward a certain direction. In this paper, we study the anti-spoofing techniques using array antenna to overcome the jamming and spoofing issues simultaneously. First, we will present the theoretical analysis results of spoofing signal response of Minimum Variance Distortionless Response (MVDR) algorithm in array antenna. Then the eigenvector algorithm of covariance matrix is suggested and verified to work with the existing anti-jamming method. The modeling and simulation are used to verify the effectiveness of the anti-spoofing algorithm. Also, the field test results show that the array antenna system with the proposed algorithms can perform the anti-spoofing function. This anti-spoofing method using array antenna is very effective in the view point of solving both the jamming and spoofing problems using the same array antenna hardware.