• Title/Summary/Keyword: Minimum Spacing

Search Result 153, Processing Time 0.022 seconds

Determining the Required Minimum Spacing between Freeway Interchange for High-speed Roadway (초고속 주행환경에서의 진출입 시설간 적정 이격거리 기준 산정 연구)

  • Kim, Heung Rae;Kim, Kyoung Su;Lee, Geun Hee;Shin, Joon Soo;Baek, Jung Gil
    • International Journal of Highway Engineering
    • /
    • v.19 no.3
    • /
    • pp.45-55
    • /
    • 2017
  • PURPOSES: The objective of this study is to estimate required minimum spacing between Freeway IC for high-speed roadways. METHODS : Since high-speed roadways with over 140 km/h design speed do not exist in Korea, VISSIM Simulation Program was used for analysis. Acceleration noise and conflicts were selected for Evaluation Index. Standard deviation size for acceleration and deceleration was calculated by VISSIM to estimate acceleration noise. Conflicts were produced in areas between Freeway IC with SSAM. RESULTS : As a result, required minimum spacing was 6 km for acceleration noise analysis, while 5 km was deducted for conflict analysis. For Model Evaluation, with SAS, conflicts did not show much difference in 5~6 km area by 90% confidence interval. CONCLUSIONS : For acceleration noise, results showed lacking in its discrimination between index per Minimum Spacing. However, conflicts were valid in difference; required minimum spacing was 5 km by validation result.

Bit Error Rate Dependence on Amplifier Spacing in Long-Haul Optical Transmission System with Mid-Span Spectral Inversion (Mid-Span Spectral Inversion 기법을 채택한 장거리 광 전송 시스템에서의 증폭기 간격에 따른 비트 에러율)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.2
    • /
    • pp.109-120
    • /
    • 2005
  • In this paper, bit error rate (BER) characteristics, sensitivity and minimum allowable launching power are numerically investigated as a function of amplifier spacing that consisted of 1,200 km WDM systems with MSSI method. It is conformed that the sensitivity and minimum allowable launching power are gradually degraded as amplifier spacings are gradually expanded, but those are not largely affected by modulation format. The sensitivity of RZ transmission system is smaller than that of NRZ transmission system, but minimum allowable launching power of NRZ transmission system is smaller than that of RZ transmission system. And, it is confirmed that the best amplifier spacing in NRZ and RZ transmission system is less than 50 km, because the sensitivity and minimum allowable launching power are less affected by fiber dispersion, channel wavelength and pump light power.

  • PDF

Effect of Stirrup Spacing of Columns and an Additional Wall other than Core Walls on the Seismic Performance of Piloti-type Buildings (코어 외 추가 벽체와 기둥 띠철근 간격이 필로티 건물의 내진성능에 미치는 영향)

  • Lee, Soo Jeong;Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.171-181
    • /
    • 2024
  • For low-rise piloti-type buildings that suffered significant damage in the Pohang earthquake, the seismic performance of those designed by codes issued before and after the earthquake has been recently revised. This study started with the expectation that many of the requirements presented in the current codes may be excessive, and among them, the spacing of column stirrup could be relaxed. In particular, the recently revised design code of concrete structures for buildings, KDS 41 20 00, suggests that the column stirrup spacing is 1/2 of the minimum cross-sectional size or 200 mm, which is strengthened compared to KBC 2016, but relaxed than the current KDS, 41 17 00, which is 1/4 of the minimum size or 150 mm. As a result of the study, it was found that the target performance level was sufficiently satisfied by following the current standards and that it could be satisfied even if the relaxed spacing was followed. Therefore, the strict column stirrup spacing of KDS 41 17 00 could be relaxed if a wall other than core walls is recommended in the current guideline for the structural design of piloti-type buildings.

A Basic Study on a New Type Particulate Emission Control Means of a Power Station Using a Micro-Gap and a Pulse Discharge (Micro-Airgap Discharge Phenomena) (초미소간격(超微小間隔)과 극단(極端)펄스방전(放電)을 이용(利用)한 미연소탄소립자(未燃燒炭素粒子) 소각제거기술(燒却除去技術) 개발기초연구(開發基礎硏究)(I) (초미소간격(超微小間隔)의 방전현상(放電現象)))

  • Moon, Jae-Duk;Shin, Soo-Youn
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.605-608
    • /
    • 1993
  • Breakdown characteristics of a small rod-to-rod microairgap has been studied for obtain an optimum breakdown voltage and an airgap spacing to be used as an emission control means by the electrical arc-burning unburnt carbon particulates exhausted from a power station burner. It is found that the breakdown voltage at the rod-to-rod airgap spacing in the rang of $1{\sim}100{\mu}m$ decreased with decrease in the rod-to-rod airgap spacing. And there were no minimum breakdown voltage on a $V_b$-Pd characteristics which is known as the minimum voltage in Paschen's law in air atmosphere. Breakdown voltages of the airgap at the constant airgap spacing were $V_{b-dc}>V_{b-ac}>V_{b-pulse}$, and it was lowest for the pulse voltage applied. As a result, it is found that a pulse power was one of effective power compared with dc or ac to be used as such an unburnt carbon particulate emission control means and the airgap spacing became to several tens ${\mu}m$, then the breakdown voltages were down to several handreds voltages.

  • PDF

Effects of Stud Spacing, Sheathing Material and Aspect-ratio on Racking Resistance of Shear Walls

  • Jang, Sang Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.97-103
    • /
    • 2002
  • This study was carried out to obtain basic information on racking resistance of shear walls and the factors affecting racking resistance of shear walls. Shear walls constructed by larch lumber nominal 50 mm × 100 mm framing and various sheathing materials were tested by applying monotonic and cyclic load functions. Shear walls with various stud spacing such as 305 mm, 406 mm, and 610 mm were tested under both of monotonic and cyclic loads and shear walls with various aspect (height-width) ratios were tested under cyclic load functions. The effect of hold-down connectors in shear walls was also tested under cyclic load functions. Racking resistance of shear walls has very close linear relation with stud spacing and width of shear walls. The ultimate racking strength of shear walls was reached at around or before the displacement of 20 mm. It was proposed in this study that the minimum racking strength and minimum width for shear wall be 500 kgf and 900 mm, respectively. Load-displacement curves obtained by racking tests under monotonic load functions can be represented by three straight line segments. Under cyclic load functions, envelope curves can be divided into three sections that can be represented by straight lines and the third section showed almost constant or decreasing slope.

Determination of the Required Minimum Spacing Between Signalized Intersection and Minor Road (교차로에 인접한 부 도로의 적정 이격거리 산정)

  • Kwon, Sung-Dae;Kim, Yoon-Mi;Kang, Nam-Won;Ha, Tae-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.573-582
    • /
    • 2014
  • Since there is no clear installation criteria on minimum spacing between signalized intersection and minor road, many problems have occurred in terms of traffic operation and safety. Even though many studies about entrance/exit intersection have been done in operational aspects, there is no specific and detailed research between the signalized intersection and minor road by now. Thus, this research suggests the optimal spacing between signalized intersection and minor road considering traffic operation and safety. Also, survey on vehicle behavior was conducted in this research. In conclusion, by suggesting the required minimum spacing between signalized intersection and minor road, it can be contribute in establishing and operating the installation criteria between signalized intersection and minor road.

Estimation of Maximum Crack Width Using Minimum Crack Spacing in Reinforced Concrete (철근 콘크리트부재에서 최소균열간격을 이용한 최대균열폭 산정)

  • 고원준;양동석;장원석;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.903-908
    • /
    • 2001
  • This paper deals with the estimation of the maximum flexural crack widths using minimum crack spacing for reinforced concrete members. The proposed method utilizes the conventional crack and bond-slip theories as well as bonding transfer length and effects of creep and shrinkage between the reinforcement and concrete. An analytical equation for the estimation of the maximum flexural crack width is formulated as a function of mean bond stress. The validity, accuracy and efficiency of the proposed method are established by comparing the analytical results with the experimental data and the major code specifications (e.g., ACI, CEB-FIP Model code, Eurocode 2, etc.). The analytical results of analysis presented in this paper indicate that the proposed method can be effectively estimated the maximum flexural crack width of the reinforced concrete members.

  • PDF

A Study on the WDM Optical Coupler Using Polished Single-Mode Optical Fiber (연마된 단일 모드 광섬유를 이용한 WDM광 결합기에 관한 연구)

  • 윤성현;홍창희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.4
    • /
    • pp.278-285
    • /
    • 1990
  • It is well know that optical oupler that is composed of the polished single-mode optical fiber can separate two arbitrary wave lengths. Wavelength division ranges of the WDM optical coupler that is made of the bending fiber with radius R vary with the center wavelength of the signal and spacing between two cores. In this paper, when optical fiber is fixed with the radius R, We proposed the spacing between two cores that can provide minimum division range. Also, We proposed the minimum radius R necessary to separate two arbitary wavelengths of the signal.

  • PDF

The Stacking Sequence Optimization of Stiffened Laminated Curved Panels with Different Loading and Stiffener Spacing

  • Kim Cheol;Yoon In-Se
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1541-1547
    • /
    • 2006
  • An efficient procedure to obtain the optimal stacking sequence and the minimum weight of stiffened laminated composite curved panels under several loading conditions and stiffener layouts has been developed based on the finite element method and the genetic algorithm that is powerful for the problem with integer variables. Often, designing composite laminates ends up with a stacking sequence optimization that may be formulated as an integer programming problem. This procedure is applied for a problem to find the stacking sequence having a maximum critical buckling load factor and the minimum weight. The object function in this case is the weight of a stiffened laminated composite shell. Three different types of stiffener layouts with different loading conditions are investigated to see how these parameters influence on the stacking sequence optimization of the panel and the stiffeners. It is noticed from the results that the optimal stacking sequence and lay-up angles vary depending on the types. of loading and stiffener spacing.

Measurement of Birefringence with Brillouin Spectroscopy

  • Lee, Suk-Mock;Hwangbo, Chang-Kwon
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.67-69
    • /
    • 2001
  • An alternative way to determine the birefringence for uniaxial crystals with Brillouin scattering experiments equipped with a Fabry-Perot interferometer is presented. The value of the minimum cavity spacing of the interferometer to observe the birefringence was found, and it is shown that the experimental error of the birefringence could be reduced by increasing the cavity spacing. For a single crystal of $\alpha$-LiIO$_3$, the birefringence was found to be 0.14814$\pm$0.0007 at 514.5 nm.