• Title/Summary/Keyword: Minimum Fungicidal Concentration

Search Result 17, Processing Time 0.02 seconds

In Vitro Antifungal Activity of (1)-N-2-Methoxybenzyl-1,10-phenanthrolinium Bromide against Candida albicans and Its Effects on Membrane Integrity

  • Setiawati, Setiawati;Nuryastuti, Titik;Ngatidjan, Ngatidjan;Mustofa, Mustofa;Jumina, Jumina;Fitriastuti, Dhina
    • Mycobiology
    • /
    • v.45 no.1
    • /
    • pp.25-30
    • /
    • 2017
  • Metal-based drugs, such as 1,10-phenanthroline, have demonstrated anticancer, antifungal and antiplasmodium activities. One of the 1,10-phenanthroline derivatives compounds (1)-N-2-methoxybenzyl-1,10-phenanthrolinium bromide (FEN), which has been demonstrated an inhibitory effect on the growth of Candida spp. This study aimed to explore the in vitro antifungal activity of FEN and its effect on the membrane integrity of Candida albicans. The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) of FEN against planktonic C. albicans cells were determined using the broth microdilution method according to the Clinical and Laboratory Standards Institute guidelines. Cell membrane integrity was determined with the propidium iodide assay using a flow cytometer and were visualized using scanning electron microscopy (SEM). Planktonic cells growth of C. albicans were inhibited by FEN, with an MIC of $0.39-1.56{\mu}g/mL$ and a MFC that ranged from 3.125 to $100{\mu}g/mL$. When C. albicans was exposed to FEN, the uptake of propidium iodide was increased, which indicated that membrane disruption is the probable mode of action of this compound. There was cells surface changes of C. albicans when observed under SEM.

Antifungal Activity of EDTA and Combinatory Synergism of EDTA with Polygodial against Saccharomyces cerevisiae (Saccharomyces cerevisiae에 대한 EDTA의 항진균 활성 및 EDTA와 Polygodial 간의 병용 효과)

  • Lee, Sang-Hwa;Lee, Jae-Ran;Kim, Chang-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.1109-1114
    • /
    • 1999
  • The antifungal activity of ethylenediaminetetraacetic acid (EDTA), an antioxidative food preservative, was investigated against Saccharomyces cerevisiae. At the general condition for antifugal test, EDTA exhibited the minimum inhibitory concentration (MIC) of 200 ${\mu}g/ml$ and the minimum fungicidal concentration (MFC) of 6,400 ${\mu}g/mL$, As seen with the antibacterial activity, the antifungal activity of EDTA was greatly decreased by high inoculum size, acidic medium, and cation ($Ca^{++},\;or\;Mg^{++}$) added to medium. On the other hand, when EDTA was combined with polygodial isolated from natural food spice, they showed strong synergism on the antifungal activity. Further, the diminishing antifungal activity of EDTA by high inoculum size, acidic medium, and cation ($Ca^{++}\;or\;Mg^{++}$) added to medium was considerably improved by the combination with polygodial.

  • PDF

In vitro Study and Clinical Trial of Natural Essential Oils and Extract Against Malassezia Species

  • Lee, Min Young;Na, Eui Young;Yun, Sook Jung;Lee, Seung-Chul;Won, Young Ho;Lee, Jee-Bum
    • Journal of Mycology and Infection
    • /
    • v.23 no.4
    • /
    • pp.91-98
    • /
    • 2018
  • Background: Malassezia, a lipophilic yeast, is a causative agent for dandruff and seborrheic dermatitis. Many biological agents have been studied for anti-Malassezia effect but further studies are needed for their clinical application. Objective: The study was conducted to evaluate the inhibitory effect of different natural essential oils and a fruit extract on Malassezia species in an in vitro study and a clinical trial. Methods: The antifungal effects of natural essential oils and a fruit extract on Malassezia species (M. furfur and M. sympodialis) were evaluated by measuring the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) and using the disc diffusion method. Natural essential oils of citron seed, lavender, and rosemary and citrus junos fruit extract were used for the in vitro study. The clinical trial was conducted with a shampoo containing four ingredients. A total of 22 subjects used the shampoo every day for 4 weeks and were evaluated using clinical photography, trichoscopy, and sebumeter at baseline, 2 weeks, and 4 weeks after treatment. Results: Antifungal activity of agents was relatively lower in lavender and rosemary essential oils at MIC and MFC. Disc diffusion method revealed same results. In the clinical trial, the amount of sebum decreased statistically significantly and erythema, dandruff, and lesion extent also improved. Conclusion: The natural essential oils and fruit extract are effective for suppressing Malassezia activity, therefore these might be used as an alternative for treatment of dandruff and seborrheic dermatitis.

Discovery of Chitin Deacetylase Inhibitors through Structure-Based Virtual Screening and Biological Assays

  • Liu, Yaodong;Ahmed, Sibtain;Fang, Yaowei;Chen, Meng;An, Jia;Yang, Guang;Hou, Xiaoyue;Lu, Jing;Ye, Qinwen;Zhu, Rongjun;Liu, Qitong;Liu, Shu
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.504-513
    • /
    • 2022
  • Chitin deacetylase (CDA) inhibitors were developed as novel antifungal agents because CDA participates in critical fungal physiological and metabolic processes and increases virulence in soil-borne fungal pathogens. However, few CDA inhibitors have been reported. In this study, 150 candidate CDA inhibitors were selected from the commercial Chemdiv compound library through structure-based virtual screening. The top-ranked 25 compounds were further evaluated for biological activity. The compound J075-4187 had an IC50 of 4.24 ± 0.16 µM for AnCDA. Molecular docking calculations predicted that compound J075-4187 binds to the amino acid residues, including active sites (H101, D48). Furthermore, compound J075-4187 inhibited food spoilage fungi and plant pathogenic fungi, with minimum inhibitory concentration (MIC) at 260 ㎍/ml and minimum fungicidal concentration (MFC) at 520 ㎍/ml. Therefore, compound J075-4187 is a good candidate for use in developing antifungal agents for fungi control.

Bacillus siamensis 3BS12-4 Extracellular Compounds as a Potential Biological Control Agent against Aspergillus flavus

  • Patapee Aphaiso;Polson Mahakhan;Jutaporn Sawaengkaew
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.8
    • /
    • pp.1671-1679
    • /
    • 2024
  • Aspergillus flavus, the primary mold that causes food spoilage, poses significant health and economic problems worldwide. Eliminating A. flavus growth is essential to ensure the safety of agricultural products, and extracellular compounds (ECCs) produced by Bacillus spp. have been demonstrated to inhibit the growth of this pathogen. In this study, we aimed to identify microorganisms efficient at inhibiting A. flavus growth and degrading aflatoxin B1. We isolated microorganisms from soil samples using a culture medium containing coumarin (CM medium) as the sole carbon source. Of the 498 isolates grown on CM medium, only 132 bacterial strains were capable of inhibiting A. flavus growth. Isolate 3BS12-4, identified as Bacillus siamensis, exhibited the highest antifungal activity with an inhibition ratio of 43.10%, and was therefore selected for further studies. The inhibition of A. flavus by isolate 3BS12-4 was predominantly attributed to ECCs, with a minimum inhibitory concentration and minimum fungicidal concentration of 0.512 g/ml. SEM analysis revealed that the ECCs disrupted the mycelium of A. flavus. The hydrolytic enzyme activity of the ECCs was assessed by protease, β-1,3-glucanase, and chitinase activity. Our results demonstrate a remarkable 96.11% aflatoxin B1 degradation mediated by ECCs produced by isolate 3BS12-4. Furthermore, treatment with these compounds resulted in a significant 97.93% inhibition of A. flavus growth on peanut seeds. These findings collectively present B. siamensis 3BS12-4 as a promising tool for developing environmentally friendly products to manage aflatoxin-producing fungi and contribute to the enhancement of agricultural product safety and food security.

Effect of fungicides to mycelial growth of some wood destroying fungi (수종목재부후균(數種木材腐朽菌)의 균사발육(菌糸發育)에 미치는 살균제(殺菌劑)의 영향(影響))

  • Chung, Dai Kyo
    • Journal of Korean Society of Forest Science
    • /
    • v.4 no.1
    • /
    • pp.14-16
    • /
    • 1965
  • (1) The sterilizing effects of NaF, $CuSO_4$, $CuCO_3$, $HgCl_2$, $ZnSO_4$, and coaltar creosote on the mycelial growth of Irpex consors Berk. Polystictus versicolor L. Fr, Polystictus versicalor L. var. nigricans, and Schizophyllum commune Fr. Were studied. (2) The range of minimum density of the fungicides to check the growth of four fungi mentioned above was as follows; NaF 0.15~0.25(%) $CuSO_4$ 0.20~0.35(%) $CuCO_3$ 0.40~0.50(%) $HgCl_2$ 0.05(%) $ZnSO_4$ 0.40~0.45(%) Creosote 0.10~0.15(%) Of the fungicides tested, $HgCl_2$ was most effective in fungicidal effects, and Creosote, NaF, $CuSO_4$, $ZnSO_4$, $CuCO_3$, followed. The order of resistance of the fungi to the fungicides was as follows: S. Commune Fr. P. Versicalor L. var.nigricans I. Consors Berk P. Versicalor L. Fr. (3) The fungicides were added to the pepton-agor culture medium at the concentration between 0.01 and 0.5%, and the medium was filled into 9cm petridshes. Two square millimeter agar blocks prepared separately from the fungi Contained agar were placed in the middle of the Petri-dishes, in cubated six days at $26^{\circ}C$. Diameter of biggest Colonies were measured.

  • PDF

Antimicrobial Activity of Some Essential Oils Against Microorganisms Deteriorating Fruit Juices

  • Helal G.A.;Sarhan M.M.;Shahla A.N.K. Abu;El-Khair E.K. Abou
    • Mycobiology
    • /
    • v.34 no.4
    • /
    • pp.219-229
    • /
    • 2006
  • Seventeen microbial species including 10 fungal taxa, two yeasts and five bacteria, were isolated from freshly prepared orange, guava and banana juices kept in open bottles at room temperature for 7 days. Eight different essential oils, from local herbs, were tested for their antimicrobial activity against these test organisms. The essential oils of Cymbopogon citratus, Ocimum basilicum and Origanum majorana were found to be highly effective against these microorganisms. Aspergillus niger, A. flavus and Saccharomyces cerevisiae, the most prevalent microorganisms in juice, showed the highest resistance against these essential oils. GC-MS analysis showed that while e-citral, a'-myrcene, and z-citral represent the major components (75.1 %) of the essential oil of Cymbopogon citratus; bezynen,l-methyl-4-(2-propenyl), 1,8-cineole and trans-a'-bisabolene were the main components (90.6%) of Ocimum basilicum; whereas 3-cyclohexen-l-0l,4-methyl-l(l-methylethyl)-(CAS), c-terpinene and trans-caryophyllene represent the major components (65.1%) of Origanum majorana. These three essential oils were introduced into juices by two techniques namely, fumigation and direct contact. The former technique showed more fungicidal effect than the latter one against A. flavus, A. niger, and S. cerevisiae. The essential oil of Cymbopogon citratus by comparison to other test oils showed the strongest effect against these fungi with a minimum inhibitory concentration of $1.5\;{\mu}l/ml$ medium and a sublethal concentration of $1.0\;{\mu}l/ml$. The antimicrobial activity of this oil is thermostable at $121^{\circ}C$ for 30 min.