• Title/Summary/Keyword: Minimum Dose

Search Result 378, Processing Time 0.025 seconds

Nitrogen and Phosphorus Removal Efficiency of Aluminum Usage in DEPHANOX Process (DEPHANOX 공정 내 알루미늄 첨가에 따른 질소 및 인 제거 효율 평가)

  • Lee, Beom;Park, Noh-Back;Tian, Dong-Jie;Heo, Tae-Young;Jun, Hang-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.5
    • /
    • pp.295-303
    • /
    • 2012
  • Removal of total nitrogen (T-N) and total phosphorus (T-P) was evaluated in a DEPHANOX process by adding Al(III) to the separator to maintain T-P in the final effluent below 0.2 mg/L. pH in each reactor was maintained 7~8 after addition of Al(III) to the levels of 5, 10, 15 mg/L. The removal efficiency of COD and T-N decreased at higher Al(III) dose, but T-P removal efficiency increased from 76.28 to 84.02, 94.66% at Al(III) dose of 5, 10, 15 mg/L, respectively. T-P in effluent showed 0.17 mg/L at Al(III) dose of 15 mg/L. Minimum 15 mg/L of Al(III) was required to maitain T-P below 0.2 mg/L in the final effluent.

Analysis of Original and Processing Image by Control of Exposure Dose, kVp in Digital Radiography (디지털 방사선에서 조사선량과 관전압조절에 의한 원본영상과 처리영상 분석)

  • Kim, Bo-Ra;Ryu, Sin-Young;Seok, Jin-Young;Choi, Jun-Gu
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.1
    • /
    • pp.49-53
    • /
    • 2011
  • Dynamic range on the digital detector can be a representation to the ratio of maximum and minimum of pixel value. Wide dynamic range and post processing ability of the digital detector made difficult to recognize visually to high or low dose images. We were evaluated a change of mean pixel value on the original and processed image, when we controlled the kVp, mA, exposure time on the digital detector. On the kVp of a constant condition, we were acquired an original and processed image by changes of mA, exposure time. According to the thickness of the subject under the same conditions, to determine a relation of pixel value and X-ray intensity, we used an aluminum step wedge. When mA and exposure times were changed under the kVp of a constant condition, the X-ray intensity was decreased by the reduction of the mean pixel value. In addition when kVp was increased in a constant condition of mAs, the mean pixel value was increased according to the increment of the X-ray intensity. Therefore, low kVp, high mA and short exposure time were a way to reduce a patient dose.

  • PDF

Influence of Electron Beam Irradiation on the Electrical and Optical Properties of InGaZnO Thin Film Transistor (InGaZnO 박막 트랜지스터의 전기 및 광학적 특성에 대한 전자빔 조사의 영향)

  • Cho, In-Hwan;Park, Hai-Woong;Kim, Chan-Joong;Jun, Byung-Hyuk
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.345-349
    • /
    • 2017
  • The effects of electron beam(EB) irradiation on the electrical and optical properties of InGaZnO(IGZO) thin films fabricated using a sol-gel process were investigated. As the EB dose increased, the electrical characteristic of the IGZO TFTs changed from semiconductor to conductor, and the threshold voltage values shifted to the negative direction. X-ray photoelectron spectroscopy analysis of the O 1s core level showed that the relative area of oxygen vacancies increased from 14.68 to 19.08 % as the EB dose increased from 0 to $1.5{\times}10^{16}electrons/cm^2$. In addition, spectroscopic ellipsometer analysis showed that the optical band gap varied from 3.39 to 3.46 eV with increasing EB dose. From the result of band alignment, it was confirmed that the Fermi level($E_F$) of the sample irradiated with $1.5{\times}10^{16}electrons/cm^2$ was located at the closest position to the conduction band minimum(CBM) due to the increase of electron carrier concentration.

Antibacterial Activity of Herbal Complex ABHC for Development of Novel Therapeutic Agent Against Sepsis (패혈증 치료제 개발을 위한 황백이 포함된 생약혼합제제 ABHC의 항균 효능)

  • Lee, Ki Man;Lee, Geum Seon;Kim, Yu Ri;Park, Jun Woo;Boo, Kyung-Jun;Yim, Dongsool;Kang, Tae Jin
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.3
    • /
    • pp.191-197
    • /
    • 2019
  • Sepsis, an infectious disease, is a life-threatening condition that arises when the response to infection causes injury to tissues and organs. The purpose of this study was to demonstrate whether ABHC-1 and ABHC-2, two functional extracts from herbal complex, have an anti-bacterial effect against Escherchia coli in vivo, in vitro experimental model. ABHC-1 and ABHC-2 showed the antibacterial activity against the bacteria by paper disc method. The minimum inhibitory concentration (MIC) was measured using alamar blue reagent. The MIC was shown at $60{\mu}g/ml$ from ABHC-1 and $500{\mu}g/ml$ from ABHC-2 against E. coli. We next examined the effect of ABHCs on the production of inflammatory cytokine, such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), which is related to the induction of inflammation, in RAW 264.7 cell. ABHC-1 and ABHC-2 increased $TNF-{\alpha}$ production of RAW 264.7 cell in a dose-dependent manner while two extract decreased $TNF-{\alpha}$ production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cell in a dose-dependent manner. At a dose of $1{\times}10^8$ E. coli. i.p., non-treated mice were succumbed, while most of mice treated with ABHC-1 were survived. Therefore, our results suggest that ABHC-1 has anti-bacterial activity and can be a novel therapeutic agent against infectious diseases.

A Study on Radiation Safety Evaluation for Spent Fuel Transportation Cask (사용후핵연료 운반용기 방사선적 안전성평가에 관한 연구)

  • Choi, Young-Hwan;Ko, Jae-Hun;Lee, Dong-Gyu;Jung, In-Su
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.4
    • /
    • pp.375-387
    • /
    • 2019
  • In this study, the radiation dose rates for the design basis fuel of 360 assemblies CANDU spent nuclear fuel transportation cask were evaluated, by measuring radiation source terms for the design basis fuel of a pressurized heavy water reactor. Additionally, radiological safety evaluation was carried out and the validity of the results was determined by radiological technical standards. To select the design basis fuel, which was the radiation source term for the spent fuel transportation cask, the design basis fuels from two spent fuel storage facilities were stored in a spent fuel transportation cask operating in Wolsung NPP. The design basis fuel for each transportation and storage system was based on the burnup of spent fuel, minimum cooling period, and time of transportation to the intermediate storage facility. A burnup of 7,800 MWD/MTU and a minimum cooling period of 6 years were set as the design basis fuel. The radiation source terms of the design basis fuel were evaluated using the ORIGEN-ARP computer module of SCALE computer code. The radiation shielding of the cask was evaluated using the MCNP6 computer code. In addition, the evaluation of the radiation dose rate outside the transport cask required by the technical standard was classified into normal and accident conditions. Thus, the maximum radiation dose rates calculated at the surface of the cask and at a point 2 m from the surface of the cask under normal transportation conditions were respectively 0.330 mSv·h-1 and 0.065 mSv·h-1. The maximum radiation dose rate 1 m from the surface of the cask under accident conditions was calculated as 0.321 mSv·h-1. Thus, it was confirmed that the spent fuel cask of the large capacity heavy water reactor had secured the radiation safety.

Evaluation of safety by skin dosimetry in Intraoperative Radiotherapy for breast cancer patients (유방암 환자의 수술 중 방사선치료 시 피부선량 측정을 통한 안전성 평가)

  • Jung, In Ho;Kim, Joon Won;Park, Kwang Woo;Ha, Jin Sook;Jeon, Mi Jin;Cho, Yoon Jin;Kim, Sei Joon;Kim, Jong Dae;Shin, Dong Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.13-22
    • /
    • 2015
  • Purpose : We investigated the safety of Intrabeam$^{TM}$ system, X-ray unit for Intraoperative Radiotheray (IORT) by measuring surface dose using Optically Stimulated Luminescent Dosimeter(OSLD). Materials and Methods : 30 patients were selected, who were in breast cancer patients and had an operation of breast conserving surgery (BCS). At the inner surface of tumor bed, 20 Gy were described, and 5 Gy at 1cm depth from the inner surface. Along the size of tumor bed which could be decided after resection of tumor, the size of applicator were determined. Usual treatment time were from 18 to 40 minutes. For the measurement of surface doses, OSLD were placed at superior(U1,2), inferior(D1,2), lateral(L1,2) and medial(M1,2) directions from the center of applicator. Each direction, two OSLD were placed at 0.5 cm and 1.5 cm from the center. Mean, maximum, and minimum doses were analyzed to be compared. Results : Mean values were U1 $2.23{\pm}0.80Gy$, U2 $1.54{\pm}0.53Gy$, D1 $1.73{\pm}0.63Gy$, D2 $1.25{\pm}0.45Gy$, L1 $1.95{\pm}0.82Gy$, L2 $1.38{\pm}0.42Gy$, M1 $2.03{\pm}0.70Gy$, and M2 $1.51{\pm}0.58Gy$. Maximum values were 4.34 Gy at U1, and Minimum values were 0.45 Gy at M2. 13.3 % of patient (4pts out of 30) were reported that surface dose were over 4 Gy. Conclusion : The fact that skin dose of all patients were less than 5 Gy based on OSLD measurement showed the safety of Intrabeam$^{TM}$ system. In the relatively small breast volume, the tendency that surface dose was increased had been shown, which was analyzed by the data of patients who irradiated over 4Gy at skin surface. Therefore, for appropriate indication for IORT, it is suggested that breast volume as well as the size and position of tumor should be carfully considered.

  • PDF

Evaluation of Attenuation Rate Error on Skin Dosimeter using Monte Carlo Simulation in Photon and Electron Beam Therapy (광자선 및 전자선 치료에서 피부선량계의 측정과 시뮬레이션을 이용한 감약률 오차 평가)

  • Han, Moo-Jae;Yang, Seung-Woo;Heo, Seung-Uk;Bae, Sang-Il;Moon, Young-Min;Park, Sung-Kwang;Kim, Jin-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.841-848
    • /
    • 2020
  • In the field of radiation therapy using photon beams and electron beams, since each patient has a different sensitivity to radiation, skin side effects may occur even at the same dose. Therefore, if there is a risk of excessive dose to the skin, a dosimeter is attached to verify whether the correct dose is being investigated. However, since the skin dosimeter checks the attachment site visually by measuring a point dose, it is difficult to confirm an accurate dose distribution. As a result, the measurement and simulation errors of the material HgI2 in the 6 MV photon beam were 3.73% and 5.24%, respectively, at the minimum thickness of 25 ㎛, and the material PbI2 was 4.73% and 5.65%, respectively. On the other hand, as a result of the 6 MeV electron beam, the measurement and simulation errors of the material HgI2 were 1.35% and 1.12%, respectively, at a minimum thickness of 25 ㎛, and the material PbI2 showed relatively low attenuation error, 1.67% and 1.20%, respectively. Therefore, it was evaluated that the thickness of the photon beam within 25 ㎛ and the electron beam within 100 ㎛ is suitable to have a reduction rate error within 5%. This study presents a new research direction for a flexible dosimeter attached to the human body that is required in clinical practice and the construction conditions of a future skin dosimeter.

Accuracy evaluation of treatment plan according to CT scan range in Head and Neck Tomotherapy (두경부 토모테라피 치료 시 CT scan range에 따른 치료계획의 정확성 평가)

  • Kwon, Dong Yeol;Kim, Jin Man;Chae, Moon Ki;Park, Tae Yang;Seo, Sung Gook;Kim, Jong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.2
    • /
    • pp.13-24
    • /
    • 2019
  • Purpose: CT scan range is insufficient for various reasons in head and neck Tomotherapy®. To solve that problem, Re-CT simulation is good because CT scan range affects accurate dose calculations, but there are problems such as increased exposure dose, inconvenience, and a change in treatment schedule. We would like to evaluate the minimum CT scan range required by changing the plan setup parameter of the existing CT scan range. Materials and methods: CT Simulator(Discovery CT590 RT, GE, USA) and In House Head & Neck Phantom are used, CT image was acquired by increasing the image range from 0.25cm to 3.0cm at the end of the target. The target and normal organs were registered in the Head & Neck Phantom and the treatment plan was designed using ACCURAY Precision®. Prescription doses are Daily 2.2Gy, 27 Fxs, Total Dose 59.4Gy. Target is designed to 95%~107% of prescription dose and normal organ dose is designed according to SMC Protocol. Under the same treatment plan conditions, Treatment plans were designed by using five methods(Fixed-1cm, Fixed-2.5cm, Fixed-5cm, Dynamic-2.5cm Dynamic-5cm) and two pitches(0.43, 0.287). The accuracy of dose delivery for each treatment plan was analyzed by using EBT3 film and RIT(Complete Version 6.7, RIT, USA). Results: The accurate treatment plan that satisfying the prescribed dose of Target and the tolerance dose in normal organs(SMC Protocol) require scan range of at least 0.25cm for Fixed-1cm, 0.75cm for Fixed-2.5cm, 1cm for Dynamic-2.5cm, and 1.75cm for Fixed-5cm and Dynamic-5cm. As a result of AnalysisAnalysis by RIT. The accuracy of dose delivery was less than 3% error in the treatment plan that satisfied the SMC Protocol. Conclusion: In case of insufficient CT scan range in head and neck Tomotherapy®, It was possible to make an accurate treatment plan by adjusting the FW among the setup parameter. If the parameter recommended by this author is applied according to CT scan range and is decide whether to re-CT or not, the efficiency of the task and the exposure dose of the patient are reduced.

Comparison of Intensity Modulated Radiation Therapy Dose Calculations with a PBC and AAA Algorithms in the Lung Cancer (폐암의 세기조절방사선치료에서 PBC 알고리즘과 AAA 알고리즘의 비교연구)

  • Oh, Se-An;Kang, Min-Kyu;Yea, Ji-Woon;Kim, Sung-Hoon;Kim, Ki-Hwan;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.48-53
    • /
    • 2012
  • The pencil beam convolution (PBC) algorithms in radiation treatment planning system have been widely used to calculate the radiation dose. A new photon dose calculation algorithm, referred to as the anisotropic analytical algorithm (AAA), was released for use by the Varian medical system. The aim of this paper was to investigate the difference in dose calculation between the AAA and PBC algorithm using the intensity modulated radiation therapy (IMRT) plan for lung cancer cases that were inhomogeneous in the low density. We quantitatively analyzed the differences in dose using the eclipse planning system (Varian Medical System, Palo Alto, CA) and I'mRT matirxx (IBA, Schwarzenbruck, Germany) equipment to compare the gamma evaluation. 11 patients with lung cancer at various sites were used in this study. We also used the TLD-100 (LiF) to measure the differences in dose between the calculated dose and measured dose in the Alderson Rando phantom. The maximum, mean, minimum dose for the normal tissue did not change significantly. But the volume of the PTV covered by the 95% isodose curve was decreased by 6% in the lung due to the difference in the algorithms. The difference dose between the calculated dose by the PBC algorithms and AAA algorithms and the measured dose with TLD-100 (LiF) in the Alderson Rando phantom was -4.6% and -2.7% respectively. Based on the results of this study, the treatment plan calculated using the AAA algorithms is more accurate in lung sites with a low density when compared to the treatment plan calculated using the PBC algorithms.

Exposure Time and X-Ray Absorber thickness in the LIGA Process (LIGA 공정에서의 노광시간과 X선마스크 흡광체의 두께)

  • 길계환;이승섭;염영일
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.102-110
    • /
    • 1999
  • The LIGA X-ray exposure step was modelled into three inequalities, by assuming that the X-ray energy attenuated within a resist is deposited only in the localized range of the resist. From these inequalities, equations for the minimum and maximum exposure times required for a good quality microstructure were obtained. Also, an equation for the thickness of an X-ray mask absorber was obtained from the exposure requirement of threshold dose deposition. The calculation method of the synchrotron radiation power from a synchrotron radiation source was introduced and applied to an X-ray exposure step. A power from a synchrotron radiation source was introduced and applied to an X-ray exposure step/ A power function of photon energy, approximating the attenuation length of the representative LIGA resist, PMMA, and the mean photon energy of the XZ-rays incident upon an X-ray mask absorber were applied to the above mentioned equations. Consequently, the tendencies of the minimum and maximum exposure and with respect to mean photon energy and thick ness of PMMA was obtained. Additionally, the tendencies of the necessary thickness of PMMA and photon energy of the X-ray mask absorber with respect to thickness of PMMA and photon energy of the X-rays incident upon an X-ray mask absorber were examined. The minimum exposure time increases monotonically with increasing mean photon energy for the same total power density and is not a function of the thickness of resist. The minimum exposure time increases with increasing mean photon energy for the same total power density in the case of the general LIGA process, where the thickness of PMMA is thinner than the attenuation length of PMMA. Additionally, the minimum exposure time increases monotonically with increasing thickness of PMMA. The maximally exposable thickness of resist is proportional to the attenuation length of the resist at the mean photon energy with its proportional constant of ln $(Dd_m/D_{dv})$. The necessary thickness of a gold X-ray mask absorber due to absorption edges of gold, increases smoothly with increasing PMMA thickness ratio, and is independent of the total power density itself. The simplicity of the derived equations has made clearly understandable the X-ray exposure phenomenon and the correlation among the exposure times, the attenuation coefficient and the thickness of an X-ray mask absorber, the attenuation coefficient and the thickness of the resist, and the synchrotron radiation power density.

  • PDF