• Title/Summary/Keyword: Minimal Surfaces

Search Result 125, Processing Time 0.021 seconds

HELICOIDAL KILLING FIELDS, HELICOIDS AND RULED MINIMAL SURFACES IN HOMOGENEOUS THREE-MANIFOLDS

  • Kim, Young Wook;Koh, Sung-Eun;Lee, Hyung Yong;Shin, Heayong;Yang, Seong-Deog
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1235-1255
    • /
    • 2018
  • We provide definitions for the helicoidal Killing field and the helicoid in arbitrary three-manifolds, and investigate helicoids and ruled minimal surfaces in homogeneous three-manifolds, mainly in $SL_2{\mathbb{R}}$ and Sol(3). In so doing we finish our classification of ruled minimal surfaces in homogeneous three-manifolds with the isometry group of dimension 4.

SOME REMARKS ON STABLE MINIMAL SURFACES IN THE CRITICAL POINT OF THE TOTAL SCALAR CURVATURE

  • Hwang, Seung-Su
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.587-595
    • /
    • 2008
  • It is well known that critical points of the total scalar curvature functional S on the space of all smooth Riemannian structures of volume 1 on a compact manifold M are exactly the Einstein metrics. When the domain of S is restricted to the space of constant scalar curvature metrics, there has been a conjecture that a critical point is isometric to a standard sphere. In this paper we investigate the relationship between the first Betti number and stable minimal surfaces, and study the analytic properties of stable minimal surfaces in M for n = 3.

MINIMAL DEL PEZZO SURFACES OF DEGREE 2 OVER FINITE FIELDS

  • Trepalin, Andrey
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1779-1801
    • /
    • 2017
  • Let X be a minimal del Pezzo surface of degree 2 over a finite field ${\mathbb{F}}_q$. The image ${\Gamma}$ of the Galois group Gal(${\bar{\mathbb{F}}}_q/{\mathbb{F}}_q$) in the group Aut($Pic({\bar{X}})$) is a cyclic subgroup of the Weyl group W($E_7$). There are 60 conjugacy classes of cyclic subgroups in W($E_7$) and 18 of them correspond to minimal del Pezzo surfaces. In this paper we study which possibilities of these subgroups for minimal del Pezzo surfaces of degree 2 can be achieved for given q.

MORSE INDEX OF COMPACT MINIMAL SURFACES

  • Hong, Suk Ho;Park, Ki Sung
    • Korean Journal of Mathematics
    • /
    • v.6 no.1
    • /
    • pp.77-85
    • /
    • 1998
  • In this paper we study the Hessian at critical points of energy function on Teichm$\ddot{u}$ller space T(R) and apply it to the index of minimal surfaces.

  • PDF

ON STABLE MINIMAL SURFACES IN THREE DIMENSIONAL MANIFOLDS OF NONNEGATIVE SCALAR CURVATURE

  • Lee, Chong-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.175-177
    • /
    • 1989
  • The following is the basic problem about the stability in Riemannian Geometry; given a Riemannian manifold N, find all stable complete minimal submanifolds of N. As answers of this problem, do Carmo-Peng [1] and Fischer-Colbrie and Schoen [3] showed that the stable minimal surfaces in R$^{3}$ are planes and Schoen-Yau [5] and Fischer-Colbrie and Schoen [3] gave a solution for the case where the ambient space is a three dimensional manifold with nonnegative scalar curvature. In this paper we will remove the assumption of finite absolute total curvature in [3, Theorem 3].

  • PDF

ON MINIMAL SURFACES WITH GAUSSIAN CURVATURE OF BIANCHI SURFACE TYPE

  • Min, Sung-Hong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.379-385
    • /
    • 2021
  • We consider the local uniqueness of a catenoid under the condition for the Gaussian curvature analogous to Bianchi surfaces. More precisely, if a nonplanar minimal surface in ℝ3 has the Gaussian curvature $K={\frac{1}{(U(u)+V(v))^2}}$ for any functions U(u) and V (v) with respect to a line of curvature coordinate system (u, v), then it is part of a catenoid. To do this, we use the relation between a conformal line of curvature coordinate system and a Chebyshev coordinate system.