• 제목/요약/키워드: Minimal Error Response

검색결과 11건 처리시간 0.027초

A Fast Algorithm for Real-time Adaptive Notch Filtering

  • Kim, Haeng-Gihl
    • Journal of information and communication convergence engineering
    • /
    • 제1권4호
    • /
    • pp.189-193
    • /
    • 2003
  • A new algorithm is presented for adaptive notch filtering of narrow band or sine signals for embedded among broad band noise. The notch filter is implemented as a constrained infinite impulse response filter with a minimal number of parameters, Based on the recursive prediction error (RPE) method, the algorithm has the advantages of the fast convergence, accurate results and initial estimate of filter coefficient and its covariance is revealed. A convergence criterion is also developed. By using the information of the noise-to-signal power, the algorithm can self-adjust its initial filter coefficient estimate and its covariance to ensure convergence.

마이크로컴퓨터에 의한 전기 유압 서보 시스템의 속도제어 (Microcomputer-Based Velocity Control for an Electro-Hydraulic Servo System)

  • 장효환;안병천;김영준
    • 대한기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.221-230
    • /
    • 1988
  • 본 연구의 목적은 마이크로컴퓨터를 사용하여 유압모터로 구성된 전기 유압 서보 시스템의 속도제어를 하는데 있어서 제어방법과 제어기 기본 하드웨어인 마이크로프로세서와 A/D, D/A 변환기의 해상도(resolution)가 전체 시스템의 성능에 미치는 영향을 주로 실험적으로 연구하는데 있다.

최적의 퍼지제어규칙을 얻기위한 퍼지학습법 (A Learning Algorithm for Optimal Fuzzy Control Rules)

  • 정병묵
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.399-407
    • /
    • 1996
  • A fuzzy learning algorithm to get the optimal fuzzy rules is presented in this paper. The algorithm introduces a reference model to generate a desired output and a performance index funtion instead of the performance index table. The performance index funtion is a cost function based on the error and error-rate between the reference and plant output. The cost function is minimized by a gradient method and the control input is also updated. In this case, the control rules which generate the desired response can be obtained by changing the portion of the error-rate in the cost funtion. In SISO(Single-Input Single- Output)plant, only by the learning delay, it is possible to experss the plant model and to get the desired control rules. In the long run, this algorithm gives us the good control rules with a minimal amount of prior informaiton about the environment.

Krylov 부공간에 근거한 모멘트일치법을 이용한 모델차수축소법 및 배열형 MEMS 공진기 주파수응답함수 계산에의 응용 (Model Order Reduction Using Moment-Matching Method Based on Krylov Subspace and Its Application to FRF Calculation for Array-Type MEMS Resonators)

  • 한정삼;고진환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.436-441
    • /
    • 2008
  • One of important factors in designing array-type MEMS resonators is obtaining a desired frequency response function (FRF) within a specific range. In this paper Krylov subspace-based model order reduction using moment-matching with non-zero expansion points is represented to calculate the FRF of array-type resonators. By matching moments at a frequency around a specific range of the array-type resonators, required FRFs can be efficiently calculated with significantly reduced systems regardless of their operating frequencies. In addition, because of the characteristics of moment-matching method, a minimal order of reduced system with a specified accuracy can be determined through an error indicator using successive reduced models, which is very useful to automate the order reduction process and FRF calculation for structural optimization iterations.

  • PDF

An optimal regularization for structural parameter estimation from modal response

  • Pothisiri, Thanyawat
    • Structural Engineering and Mechanics
    • /
    • 제22권4호
    • /
    • pp.401-418
    • /
    • 2006
  • Solutions to the problems of structural parameter estimation from modal response using leastsquares minimization of force or displacement residuals are generally sensitive to noise in the response measurements. The sensitivity of the parameter estimates is governed by the physical characteristics of the structure and certain features of the noisy measurements. It has been shown that the regularization method can be used to reduce effects of the measurement noise on the estimation error through adding a regularization function to the parameter estimation objective function. In this paper, we adopt the regularization function as the Euclidean norm of the difference between the values of the currently estimated parameters and the a priori parameter estimates. The effect of the regularization function on the outcome of parameter estimation is determined by a regularization factor. Based on a singular value decomposition of the sensitivity matrix of the structural response, it is shown that the optimal regularization factor is obtained by using the maximum singular value of the sensitivity matrix. This selection exhibits the condition where the effect of the a priori estimates on the solutions to the parameter estimation problem is minimal. The performance of the proposed algorithm is investigated in comparison with certain algorithms selected from the literature by using a numerical example.

시뮬레이션 시간 단계에 따른 FOWT 서지방향 항력계수 결정에 관한 CFD해석 연구 (CFD Analysis for Determining Surge-direction Drag Coefficient of FOWT based on Simulation Time Step)

  • 양호성;이영호
    • 신재생에너지
    • /
    • 제20권2호
    • /
    • pp.17-25
    • /
    • 2024
  • In this study, the effect of the time step specified in a computational fluid dynamics (CFD) simulation on load response is analyzed and the drag coefficients of the floating body of floating offshore wind turbines (FOWTs) are estimated. By evaluating the error in the FOWT load response and the change in the drag-coefficient values based on the density of the time intervals, this study aims to establish a time-interval setting that minimizes the time and cost of CFD simulations for selecting drag-coefficient values. Practical CFD utilization strategies necessary for the calibration of medium-to high-fidelity analysis tools are presented. Based on a comparative analysis of CFD simulations conducted at various time intervals, the results confirmed that under a certain time interval that sufficiently considers various factors, the accuracy of the FOWT response with respect to density shows minimal differences, thereby providing an efficient utilization method for CFD simulations in FOWT design and analysis.

무곱셈 구현을 위한 FIR 필터 계수의 압축 센싱 (Compressive Sensing of the FIR Filter Coefficients for Multiplierless Implementation)

  • 김시현
    • 한국정보통신학회논문지
    • /
    • 제18권10호
    • /
    • pp.2375-2381
    • /
    • 2014
  • FIR 필터의 계수가 CSD(canonic signed digit) 형식으로 표현되고 계수 당 0이 아닌 자릿수가 매우 적다면 적은 하드웨어 비용으로 고속 필터링을 수행할 수 있다. 주어진 주파수 응답 특성을 따르며 최소의 0이 아닌 부호자릿수(signed digit)를 갖는 CSD 형식의 FIR 필터 계수를 설계하는 문제는 목표 주파수 응답과의 최대 오차를 최소화하는 희소한 0이 아닌 부호자릿수 계수를 찾는 문제와 같다. 본 논문에서는 FIR 필터의 무곱셈 초고속 구현을 위해 압축센싱 기법에 기반을 둔 CSD 형식의 계수 설계 알고리듬을 제안한다. 탐욕(greedy) 방법을 채용한 본 알고리듬에서는 매 반복단계에서 잔차 신호를 구성하는 가장 큰 크기의 atom을 선택하고, 그 atom의 계수를 나타내는 가장 큰 부호자리를 찾아 FIR 필터의 계수를 갱신한다. 설계 예를 통해 평균적으로 탭 당 두 번 이하의 덧셈만으로 목표 주파수 응답에 근접한 FIR 필터링을 수행할 수 있음을 확인하였고, 이는 적은 하드웨어 비용으로 고속 필터링 구현에 적합하다.

설계기반 품질고도화에서 디자인 스페이스 구축을 위한 효율적인 실험계획 (Efficient Designs to Develop a Design Space in Quality by Design)

  • 정종희;김진영;임용빈
    • 품질경영학회지
    • /
    • 제47권3호
    • /
    • pp.523-535
    • /
    • 2019
  • Purpose: We research on the efficient response surface methodology(RSM) design to develop a design space in Quality by Design(QbD). We propose practical designs for the successful construction of the design space in QbD by allowing different number of replicates at the box points, star points, and the center point in the rotatable central composite design(CCD). Methods: The fraction of design space(FDS) plot is used to compare designs efficiency. The FDS plot shows the fraction of the design space over which the relative standard error of predicted mean response lies below a given value. We search for practical designs whose minimal half-width of the tolerance interval per a standard deviation is less than 4.5 at 0.8 fraction of the design space. Results: The practical designs for the number of factors between two and five are listed. One of the designs in the list could be chosen depending on the experimental budget restriction. Conclusion: The designs with box points replications are more efficient than those with the star points replication. The sequential method to establish a design space is illustrated with the simulated data based on the two examples in RSM.

수소 취급시설 피해 저감을 위한 방호벽 설치 다목적 최적화 연구 (Multi-Objective Optimization Study of Blast Wall Installation for Mitigation of Damage to Hydrogen Handling Facility)

  • 오세현;안승효;김은희;마병철
    • 한국안전학회지
    • /
    • 제38권6호
    • /
    • pp.9-15
    • /
    • 2023
  • Hydrogen is gaining attention as a sustainable and renewable energy source, potentially replacing fossil fuels. Its high diffusivity, wide flammable range, and low ignition energy make it prone to ignition even with minimal friction, potentially leading to fire and explosion risks. Workplaces manage ignition risks by classifying areas with explosive atmospheres. However, the effective installation of a blast wall can significantly limit the spread of hydrogen, thereby enhancing workplace safety. To optimize the wall installation of this barrier, we employed the response surface methodology (RSM), considering variables such as wall distance, height, and width. We performed 17 simulations using the Box-Behnken design, conducted using FLACS software. This process yielded two objective functions: explosion likelihood near the barrier and explosion overpressure affecting the blast wall. We successfully achieved the optimal solution using multi-objective optimization for these two functions. We validated the optimal solution through verification simulations to ensure reliability, maintaining a margin of error of 5%. We anticipated that this method would efficiently determine the most effective installation of a blast wall while enhancing workplace safety.

크리로프 부공간법에 근거한 모델차수축소기법을 통한 배열형 MEMS 공진기의 주파수응답해석 (Frequency Response Analysis of Array-Type MEMS Resonators by Model Order Reduction Using Krylov Subspace Method)

  • 한정삼;고진환
    • 대한기계학회논문집A
    • /
    • 제33권9호
    • /
    • pp.878-885
    • /
    • 2009
  • One of important factors in designing MEMS resonators for RF filters is obtaining a desired frequency response function (FRF) within a specific frequency range of interest. Because various array-type MEMS resonators have been recently introduced to improve the filter characteristics such as bandwidth, pass-band, and shape factor, the degrees of freedom (DOF) of finite elements for their FRF calculation dramatically increases and therefore raises computational difficulties. In this paper the Krylov subspace-based model order reduction using moment-matching with non-zero expansion points is represented as a numerical solution to perform the frequency response analyses of those array-type MEMS resonators in an efficient way. By matching moments at a frequency around the specific operation range of the array-type resonators, the required FRF can be efficiently calculated regardless of their operating frequency from significantly reduced systems. In addition, because of the characteristics of the moment-matching method, a minimal order of reduced system with a prearranged accuracy can be determined through an error indicator using successive reduced models, which is very useful to automate the order reduction process and FRF calculation for structural optimization iterations. We also found out that the presented method could obtain the FRF of a $6\times6$ array-type resonator within a seventieth of the computational time necessary for the direct method and in addition FRF calculation by the mode superposition method could not even be completed because of a data overflow with a half after calculation of 9,722 eigenmodes.