• Title/Summary/Keyword: Minimal Action

Search Result 94, Processing Time 0.03 seconds

The Effects of Alismatis Rhizoma Extract on Allergic Inflammation in RBL-2H3 Mast Cells and OVA/alum-Sensitized Mice (택사 (澤瀉, Alismatis Rhizoma) 추출물이 RBL-2H3 비만세포와 OVA/alum 감작 생쥐의 알레르기 염증 반응에 미치는 영향)

  • Song, Ji Hyun;Lee, Jin Hwa;Kim, Eun Jin;Kim, Yun Hee
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.32 no.3
    • /
    • pp.1-15
    • /
    • 2018
  • Objectives Alismatis Rhizoma has been known to suppress inflammation and allergic reaction. However, the cellular target of Alismatis Rhizoma and its mechanism of action remain unclear. This study was designed to examine the effect of Alismatis Rhizoma extract (ALC) on the RBL-2H3 mast cells in vitro and on the OVA/alum sensitized mice ex vivo. Methods In the study, RBL-2H3 mast cells were cultured in minimal essential medium (MEM) for 24 hours, and treated separately with cyclosporin A and varying doses of ALC, and then stimulated with Phorbol 12-myristate 13-acetate (PMA) (50 ng/ml) and Ionomycin ($0.5{\mu}M$). The levels of IL-13, IL-4 were measured by ELISA analysis. The mRNA levels of IL-4, IL-5, IL-6, IL-13, GM-CSF, $TNF-{\alpha}$ were analyzed with Real-time PCR. Also, manifestations of MAPKs transcription factors and $NF-{\kappa}B$ p65 translocation were analyzed by western blotting in vitro. Subsequently, for ex vivo experiment, we induced allergic inflammation on Balb/c mice by OVA/alum and administered ALC orally. And we measured serum OVA-specific IgE level and IL-4, IL-13 in the splenocyte culture supernatant by ELISA analysis. Results ALC was shown to suppress mRNA expression of IL-4, IL-5, IL-6, IL-13, GM-CSF, $TNF-{\alpha}$, and to inhibit the IL-13, IL-4 production. Also ALC reduced an activation of mast cells specific signal MAPKs transcription factors and $NF-{\kappa}B$ p65 from the western blot analysis in in vitro experiment. In ex vivo, ALC oral adminstration decreased the level of OVA-specific IgE in serum, and IL-4, IL-13 in the splenocyte culture supernatant. Conclusions ALC is shown to reduce inflammation and allergic response by suppressing Th2 cytokines through the regulation of transcription factors MAPKs and $NF-{\kappa}B$ p65 in mast cells. Administration of ALC suppressed OVA-specific IgE in ovalbumin allergy model through the inhibition of Th2 cytokine. In conclusion, ALC can be considered as an effective treatment for allergic diseases such as atopic dermatitis.

Insect Pest Resistance to Insecticides and Future Researches (해충의 살충제저항성과 금후대책)

  • Choi Seung Yoon
    • Korean journal of applied entomology
    • /
    • v.22 no.2 s.55
    • /
    • pp.98-105
    • /
    • 1983
  • The rapid increase in cases of insect resistance to insecticides indicates that the contribution of present chemical control practices inevitably leads to exhaustion of available insecticide resources against key insect species. Now the problem of insecticide resistance exists worldwide among insects and mites affecting field crops and animals including human beings, ranging from minimal or absent in some developing countries, where use of insecticides has been low, to extremely severe in many developed countries. Since the occurrence of insect resistance to insecticides was firstly recognized in 1908, the increase in recent decades has been almost linear and now the number of species of insects and acarines in which resistant strains have evolved have been increased to a total of 432. Of these, $261(60\%)$ are agricultural importance and $171(40\%)$ of medical/veterinary importance. The phenomenon of insecticide resistance is asserting itself as the greatest challenge to effective chemical control of many important insect pests. Resistance of insects to insecticides has a history of nearly 80 years, but its greatest increase and its strongest impact have occurred during the last 40 years following the discovery and extensive use of synthetic organic insecticides and acaricides. The impact of resistance should be considered not only in terms of greater cost of pest control due to increased dosages and number of applications but also in terms of the ecological disruption of pest-beneficial species density relationships, the loss of investment in the development of the insecticides concerned, and socio-economic disruption in agricultural communities. Despite its grave economic consequences, the phenomenon of insecticide resistance has received surprisingly little attention in Korea. Since the study of insecticides started firstly in 1963, many entomologists have been concerned with this study. According to their results, some of the rice pests and some of the mites on orchard trees, for example, have developed worrisome level of resistance in several areas of this peninsula. With many arthropods, considerable advances in the developed countries have been made in the study of the biochemical and physiological mechanisms of resistance. Progress involves the biochemical characteristics of specific defense mechanisms, their genetics, interactions, and their quantitative and qualitative contribution to resistance. But their studies arc still inadequately known and relatively little have been contributed in terms of unique schemes of population management in achieving satisfactory pest control. It is apparent that there is no easy solution to resistance as a general phenomenon. For future challenging to effective control of insect pests which are resistant to the insecticides concerned, new insecticide groups with distinctly novel mode of action are urgently needed. It is clear, however, that a great understanding of the factors which govern the intensity of selection of field population for resistance could lead to far more permanently successive use of chemicals within the framework of integrated pest management than heretofore practiced.

  • PDF

EFFECTS OF FLUORIDE MOUTHRINSE ON CELL ACTIVITY OF GINGIVAL FIBROBLASTS OF CHILDREN (불소양치용액이 소아 치은 섬유아세포의 세포활성에 미치는 영향에 관한 연구)

  • Lee, Dong-Hyun;Lee, Kwang-Hee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.1
    • /
    • pp.204-219
    • /
    • 1997
  • The use of fluoride is one of the most effective methods for caries prevention. Fluoridation of public water supply has been recognized, for many years, as an effective way to reduce dental caries. The fluoride supplement has been recommended when the natural fluoride was unavailable or below the optimal range. However the mechanism of caries prevention by fluoride has not yet been clarified and it is well known that an overdose of fluoride results inacute and chronic toxicity, especially dental fluorosis. Fluoride mouthrinsing solution is widely used in dentistry due to its effectiveness in carrying anticariogenic action. Understanding the effects of fluoride mouthrinsing solution on human gingival fibroblasts will provide the safety rationale for its use during the caries preventive therapy. The purpose of this study was to evaluate the cytotoxic effect of fluoride mouthrinsing solution on the human gingival fibroblast in vitro. The human gingival fibroblasts were cultured from healthy gingiva on the extracted deciduous teeth of children. Cells were inoculated into a 24-well plate with $1{\times}10^4cells/well$ of medium at $37^{\circ}C$, 100% humidity, 5% $CO_2$ incubator for 24 hours. And the cells were counted by using the hemocytometer at each designed study. Human gingival fibroblasts were cultured in growth medium after one minute application range of 0.02%-0.2% NaF solution and 0.1% $SnF_2$ solution. The cells used in this study were between fifth to eighth passage number. The cell morphology was examined by inverted microscope and cell proliferation was measured by incorporating $[^3H]$-thymidine into DNA. DNA synthesis by human gingival fibroblasts was assessed by $[^3H]$-thymidine uptake assays while the cell activity was measured by MTT assay. Each concentrated fluoride mouthrinsing solution was estimated for its biocompatability with fibroblasts by the tissue culture technique. The results of this study were as follows : 1. It was observed that at 0.05%, 0.2% NaF mouthrinsing solution the cytoplasmic processes became globular. When 0.1% $SnF_2$ mouthrinsing solution was applied, the cytoplasmic process and cell morphology were disappeared. 2. DNA synthetic activity was reduced regardless of the concentration of the fluoride mouthrinsing solution. However, the result is statistically insignificant except 0.1% $SnF_2$ mouthrinsing solution(p<0.05). 3. Our results indicate that 0.02%, 0.05% concentrations of NaF mouthrinsing solution caused minimal cytotoxicity. But 0.2% NaF and 0.1% $SnF_2$ concentration were a significant difference between the cell activity in the experimental group and control group (p<0.05). 4. After appling 0.05% & 0.02% NaF fluoride mouthrinsing solution, cell activity was restored to the control groups level according to incubating time. The results suggest that direct exposure to fluoride solution inhibits gingival fibroblast activity. Therefore, for the most effective use of fluoride use, lowering the concentration of fluoride mouthrinsing is advisable because it maintains biocompatability and free ion in the oral fluid.

  • PDF

Prevention from microbial post-harvest injury of fruits and vegetables by using grapefruit seed extract, a natural antimicrobial agent (천연항균제처리에 의한 과채류의 선도유지 및 병해방지에 관한 연구 -저장중 병리적 장해 방지를 중심으로-)

  • Cho, Sung-Hwan;Seo, Il-Won;Lee, Keun-Hoi
    • Applied Biological Chemistry
    • /
    • v.36 no.4
    • /
    • pp.265-270
    • /
    • 1993
  • In order to retain the freshness of fruits and vegetables and to reduce the rate of disease damage, grafruit seed extract (GPSE), natural microorganism control agent, was applied during the preservation process of fresh fruits and vegetables. GFSE showed an effective inhibitory action against plant putrefactive bacteria and fungi which were involved in the decay of fruits and vegetables. Minimal inhibitory concentrations for GFSE against the microbes were in the range of 50 to 2,000 ppm. Direct observation of microbial cells and spores using electron microscopy showed their function was destroyed by the treatment of the dilute solutions of GFSE. Fresh Welsh onions, onions and red peppers treated with GFSE and stored in polyethylene film (0.1 mm) retained better quality in color and texture than the non-treated control. GFSE was efficient in controlling the germination of potatoes. It was observed that GFSE would reduce disease damages and have bactericidal and fungicidal properties during the storage of such fruits and vegetables as zucchinis, cucumbers, tomatoes and mandarin oranges.

  • PDF

Mechanism Underlying the Anti-Inflammatory Action of Piceatannol Induced by Lipopolysaccharide (당지질로 유도한 염증반응에서 Piceatannol의 항염증 기전 연구)

  • Cho, Han-Jin;Shim, Jae-Hoon;So, Hong-Seob;YoonPark, Jung-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1226-1234
    • /
    • 2012
  • 3,4,3',5'-Tetrahydroxy-trans-stilbene (piceatannol) is a derivative of resveratrol with a variety of biological activities, including anti-inflammatory, anti-proliferative, and anti-cancer activities. We assessed the mechanisms by which piceatannol inhibits inflammatory responses using lipopolysaccharide (LPS)-treated Raw264.7 murine macrophages. Piceatannol (0~10 ${\mu}mol/L$) decreased LPS-induced release of nitric oxide, tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, IL-$1{\beta}$, and inhibited LPS-induced protein expression of inducible nitric oxide synthase (iNOS). Activation of nuclear factor-kappaB (NF-${\kappa}B$), activator protein (AP)-1, and signal transducer and activator of transcription 3 (STAT3) are crucial steps during an inflammatory response. Piceatannol prevented LPS-induced degradation of inhibitor of ${\kappa}B$ ($I{\kappa}B$), translocation of p65 to the nucleus, and phosphorylation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK). Additionally, piceatannol inhibited LPS-induced phosphorylation of STAT3 and IL-6-induced translocation of STAT3 to the nucleus. Furthermore, piceatannol increased the protein and mRNA levels of hemeoxygenase (HO)-1, the rate-limiting enzyme of heme catabolism that plays a critical role in mediating antioxidant and anti-inflammatory effects. Piceatannol further induced antioxidant response elements (ARE)-driven luciferase activity in Raw264.7 cells transfected with an ARE-luciferase reporter construct containing the enhancer 2 and minimal promoter region of HO-1. These results suggest that piceatannol exerts anti-inflammatory effects via the down-regulation of iNOS expression and up-regulation of HO-1 expression.

Two-Dimensional Flood Inundation Analysis Resulting from Irrigation Reservoir Failure - Focused on the Real Case with the Minimal Data Set - (농업용 저수지 붕괴에 따른 2차원 홍수범람해석 -계측자료가 부족한 실제사례를 중심으로-)

  • Lee, Jae Young;Kim, Byunghyun;Park, Jun Hyung;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.231-243
    • /
    • 2016
  • This study presents the applicability of two-dimensional (2D) flood inundation model by applying to real irrigation reservoir failure with limited available data. The study area is Sandae Reservoir placed in Gyeongju and downstream area of it and the reservoir was failured by piping in 2013. The breach hydrograph was estimated from one-dimensional (1D) hydrodynamic model and the discharge was employed for upstream boundary of 2D flood inundation model. Topography of study area was generated by integrating digital contour map and satellite data, and Cartesian grids with 3m resolution to consider geometry of building, road and public stadium were used for 2D flood inundation analysis. The model validation was carried out by comparing predictions with field survey data including reservoir breach outflow, flood extent, flood height and arrival time, and identifying rational ranges with allowed error. In addition, the applicability of 2D model is examined using different simulation conditions involving grid size, building and roughness coefficient. This study is expected to contributed to analysis of irrigation reservoirs were at risk of a failure and setting up Emergency Action Plan (EAP) against irrigation reservoir failure.

Antibiotic sensitivity of the bacterial strains isolated from operating wounds (수술창에서 분리된 균주의 항생제 감수성)

  • Oh, Yang-Hyo;Kim, Yung-Bu;Park, Young-Min;Kim, Min-Jung;Cha, Mi-Sun
    • Journal of Life Science
    • /
    • v.8 no.1
    • /
    • pp.40-50
    • /
    • 1998
  • Staphylococuus aureus and Escherichia coli is increasingly responsible for outbreaks of nosocomial infection around the world. Because serious infections due to these organisms currently necessiate use of non-$\beta$-lactam antimicrobial therapy and because strains is ofen resistant to many antimicrobial agents, infections with this organism are difficult to treat. Isolated strains from post operaton wounds of PNU hospital patient were tested for the antimicrobial susceptibility, resistant pattern and combined action to the 6 antibiotics. The minimal inhibitory concentraction of each antibiotic anc antibiotics combining in various ratios were measured by checkerboard dilution method. the synergism was determined through calculating the fractional inhibitory concentraction index (FICI). In case of S. aureus, 15 strains was shown to be highly sensitive to streptomycin and 13 strains to cephalothin. In case of E. coli, it is excellent senstitive 16 strains, sensitive 4 strains on cefoperazone, as like S. aureus, and thus the sensitive is most to be 66%. As the result of gaining MIC from S. aureus upon agar dilution method, MIC$_{50}$ was 8$\mu$g/ml, MIC$_{90}$ was 16$\mu$g/ml and thus the streptomycine is shown to be lowest. In case of E, coli, S. MIC$_{50}$ was 4$\mu$g/ml, MIC$_{90}$ was 16$\mu$g/ml, in streptomycin and thus is shown to be lower than S. aureus. As the result of comparing the resistance aspect of combining the antibiotics on S. aureus and E. coli, the resistant strain can be known to be reduced to the large range more than each 40% than combining with only aminoglycoside-series or cephalosporine-series. As the result of combining aminoglycoside-series, streptomycin and cephalothin or cefuroxime sensitive to S. aureus and E. coli in the above mentioned results, the increase or imporovement of effect is over 73% and 80%, respectively, thus the case od combining 2 antibiotics is shown to be better in the effect. Isolated strains from operating wounds were for the antimicrobial susceptibility. In case of S. aureus 15 strains was shown to be sensitive very much on streptomycin. In case of E. coli it is excellent sensitive 16 strains. As the results of combining aminoglycosides-series, streptomycin and cephalosporine series, cephalothin and cefuroxime, the increase or improvement of effect is over 73%, thus case of combining 2 antibiotics is shown to be better in the effect.

  • PDF

Identification of Methicillin-Resistant Staphylococcus aureus by Polymerase Chain Reaction (중합효소 연쇄반응을 이용한 메치실린 내성균주의 동정)

  • Park, In-Cheol;Kim, Gwang-Su;Park, Myeong-Jin;Lee, Seung-Hun;Hong, Seok-Il;Choe, Tae-Bu
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.460-464
    • /
    • 1999
  • Methicillin-resistant Staphyloccus aureus (MRSA) has been known to be resistant to many kinds of antibiotics and causes a problem of nosnocomial infection since the third generation of cephalosporines has been introduced in the 1980s. As antibiotic sensitivity tests which have been routinely used to detect MRSA in the laboratory depend on the culture conditions such as, pH, temperature, and time, etc., it is difficult to decide in the case of borderline- or low-level of MRSA. Therefore it would be necessary to develope a new method based on the molecular biological technique to overcome these problems. In this study, we extracted DNA from S. aureus and performed polymerase chain reaction (PCR) to amplify mec A gene, encoding penicillin-binding protein 2' (PBP-2'), which is known to confer bacteria resistance to the bacteriostatic action of methicillin. The results were compares with those of minimal inhibitory concentration (MIC) test. When MIC test with oxacillin was performed on the 120 isolates of S. aureus from each patient's specimens, 64 of them were MRSA and 56 of them were methicillin-sensitive Staphylococcus aureus (MSSA). In pus specimen, more precisely, 61.9% (26/42) of MRSA was detected, and 44.2% (19/43), 60% (9/15) and 50% (10/20) of MRSA were detected in sputum, body fluid, and other specimen respectively. When 40 isolates of MRSA and MSSA were tested by PCR method and compares with the results of MIC method, different results were obtained from 1 isolate of MRSA (2.5%) and in 2 isolates of MSSA (5%) suggesting that PCR method should be performed at the same time for more accurate clinical test of MRSA.

  • PDF

The Endocrine Changes and Alteration of the Ovarian Response to Clomiphen Citrate after Laparoscopic Laser Vaporization in Patients with Polycystic Ovary Syndrome (다낭성 난포 증후군 환자에서 복강경적 Laser Vaporization 후 내분비적 변화 및 클로미펜에 대한 난소 반응성의 변화)

  • Lee, Sang-Joon;Kim, Jin-Young;Park, Ki-Hyun;Choi, Kyu-Hong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.3
    • /
    • pp.483-490
    • /
    • 1999
  • Objectives: Polycystic ovary syndrome (PCOS) has the feature of excessive LH, hyperandrogenism and disturbance of folliculogenesis. Also, insulin, IGF-I and IGFBP-l are involved in the pathogenesis of PCOS. Various surgical and medical therapies have been used and the action mechanisms are related to the endocrine effect. Laparoscopic ovarian electrocautery or laser vaporization is effective in the restoration of ovulation and normal menstrual cycle with minimal invasive procedure especially in the patients resistant to medical therapy. Clomiphen citrate (CC) is used for the ovulation induction in pcas and the resistance is known to be related to insulin, IGF-I, IGFBP-l levels. This study was performed to evaluate the effect of the laparoscopic laser vaporization on the levels of LH, FSH, testosterone, IGF-I and IGFBP-l and on the ovarian response to clomiphen citrate in patients with CC-resistant PCOS. Materials and Methods: The fasting basal serum LH, FSH, testosterone, IGF-I and IGFBP-l level were measured in 10 PCOS patients with CC-resistance and 7 normal controls with regular menstrual cycle. In PCOS, after laparoscopic $CO_2$ laser vaporization, endocrine levels were measured in 1 week interval for 4 weeks and then compared with preoperative levels. Results: In PCOS group, mean serum LH/FSH ratio, testosterone, IGF-I levels were higher and IGFBP-l level was lower than control. LH/FSH ratio decreased from $2.51{\pm}0.67$ to $1.7{\pm}0.6$ (p<0.05) in 2 weeks, to $0.56{\pm}0.2$ (p<0.01) in 3 weeks and to $1.41{\pm}0.3$ (p<0.01) in 4 weeks after operation. Testosterone level decreased from $1.51{\pm}0.82ng/ml$ to $0.65{\pm}0.34ng/ml$ (p<0.05) in 2 weeks, to $0.56{\pm}0.67ng/ml $(p<0.01) in 3 weeks after operation. IGF-I level also decreased from $436{\pm}47.5{\mu}g/l$ to $187{\pm}38{\mu}g/l$ (p<0.0l) in 1 week, to $167{\pm}42{\mu}g/l$ (p<0.01) in 2 weeks, $179{\pm}55{\mu}g/l$ (p<0.01) in 3 weeks and to $120{\pm}43{\mu}g/l$ (p<0.01) in 4 weeks after operation. IGFBP-l level showed no significant change. In 8 of 10 PCOS patients, ovulation was induced with low dose clomiphen citrate. Conclusion: Laparoscopic $CO_2$ laser vaporization restores normal menstrual cycle and ovulation through endocrine effect of decreasing LH/FSH ratio, testosterone and IGF-I level and increases the response to CC. Therefore it is useful for restoration of normal menstruation and induction of ovulation in CC resistant PCOS patients.

  • PDF

Modulation of Activator Protein-1 (AP-1) and MAPK Pathway by Flavonoids in Human Prostate Cancer PC3 Cells

  • Gopalakrishnan, Avanthika;Xu, Chang-Jiang;Nair, Sujit S.;Chen, Chi;Hebbar, Vidya;Kong, Ah-Ng Tony
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.633-644
    • /
    • 2006
  • In last couple of decades the use of natural compounds like flavonoids as chemopreventive agents has gained much attention. Our current study focuses on identifying chemopreventive flavonoids and their mechanism of action on human prostate cancer cells. Human prostate cancer cells (PC3), stably transfected with activator protein 1 (AP-1) luciferase reporter gene were treated with four main classes of flavonoids namely flavonols, flavones, flavonones, and isoflavones. The maximum AP-1 luciferase induction of about 3 fold over control was observed with $20\;{\mu}M$ concentrations of quercetin, chrysin and genistein and $50\;{\mu}M$ concentration of kaempferol. At higher concentrations, most of the flavonoids demonstrated inhibition of AP-1 activity. The MTS assay for cell viability at 24 h showed that even at a very high concentration $(500\;{\mu}M)$, cell death was minimal for most of the flavonoids. To determine the role of MAPK pathway in the induction of AP-1 by flavonoids, Western blot of phospho MAPK proteins was performed. Four out of the eight flavonoids namely kaempferol, apigenin, genistein and naringenin were used for the Western Blot analysis. Induction of phospho-JNK and phospho-ERK activity was observed after two hour incubation of PC3-AP1 cells with flavonoids. However no induction of phospho-p38 activity was observed. Furthermore, pretreating the cells with specific inhibitors of JNK reduced the AP-1 luciferase activity that was induced by genistein while pretreatment with MEK inhibitor reduced the AP-1 luciferase activity induced by kaempferol. The pharmacological inhibitors did not affect the AP-1 luciferase activity induced by apigenin and naringenin. These results suggest the possible involvement of JNK pathway in genistein induced AP-1 activity while the ERK pathway seems to play an important role in kaempferol induced AP-1 activity.